论文标题
从克鲁斯卡尔定理到弗里德曼的差距状况
From Kruskal's theorem to Friedman's gap condition
论文作者
论文摘要
哈维·弗里德曼(Harvey Friedman)在有限标记树的嵌入中的间隙条件在组合学(图形次要定理的证明)和数学逻辑(强大的独立性结果)中起着重要作用。在本文中,我们表明可以从少数动机的构建块中重建差距条件:它通过统一的Kruskal定理的迭代应用而产生。
Harvey Friedman's gap condition on embeddings of finite labelled trees plays an important role in combinatorics (proof of the graph minor theorem) and mathematical logic (strong independence results). In the present paper we show that the gap condition can be reconstructed from a small number of well-motivated building blocks: it arises via iterated applications of a uniform Kruskal theorem.