论文标题
BCI中脑电图的多尺度神经网络
Multi-Scale Neural network for EEG Representation Learning in BCI
论文作者
论文摘要
深度学习的最新进展对脑部计算机界面研究产生了方法论和实际影响。在各种深层网络体系结构中,卷积神经网络非常适合时空脑电图信号表示学习。文献提取物中描述的大多数基于CNN的方法在顺序的抽象级别,具有重复性非线性操作,并涉及密集连接的层进行分类。然而,神经生理学的研究表明,脑电图信号的频率分量不同。为了更好地反映EEG中的这些多频性特性,我们提出了一个新型的深层多尺度神经网络,该神经网络在多个频率/时间范围内发现特征表示,并提取电极之间的关系,即空间表示,以实现主题意图/条件意图识别。此外,通过完全代表具有时空频谱信息信息的脑电图信号,可以将所提出的方法用于主动和被动BCI的各种范式,与主要集中在单占单位上的现有方法相反。为了证明我们提出的方法的有效性,我们对主动/被动BCI数据集的各种范式进行了实验。我们的实验结果表明,拟议的方法在根据可比的最新方法进行判断时可以提高性能。此外,我们使用不同的技术(例如PSD曲线和相关性得分检查)分析了提出的方法,以验证多尺度的EEG信号信息捕获能力,激活模式图,用于研究学习的空间过滤器以及可视化的T-SNE绘图以可视化代表的特征。最后,我们还展示了我们的方法在现实世界中的应用。
Recent advances in deep learning have had a methodological and practical impact on brain-computer interface research. Among the various deep network architectures, convolutional neural networks have been well suited for spatio-spectral-temporal electroencephalogram signal representation learning. Most of the existing CNN-based methods described in the literature extract features at a sequential level of abstraction with repetitive nonlinear operations and involve densely connected layers for classification. However, studies in neurophysiology have revealed that EEG signals carry information in different ranges of frequency components. To better reflect these multi-frequency properties in EEGs, we propose a novel deep multi-scale neural network that discovers feature representations in multiple frequency/time ranges and extracts relationships among electrodes, i.e., spatial representations, for subject intention/condition identification. Furthermore, by completely representing EEG signals with spatio-spectral-temporal information, the proposed method can be utilized for diverse paradigms in both active and passive BCIs, contrary to existing methods that are primarily focused on single-paradigm BCIs. To demonstrate the validity of our proposed method, we conducted experiments on various paradigms of active/passive BCI datasets. Our experimental results demonstrated that the proposed method achieved performance improvements when judged against comparable state-of-the-art methods. Additionally, we analyzed the proposed method using different techniques, such as PSD curves and relevance score inspection to validate the multi-scale EEG signal information capturing ability, activation pattern maps for investigating the learned spatial filters, and t-SNE plotting for visualizing represented features. Finally, we also demonstrated our method's application to real-world problems.