论文标题

Kitaev建筑块建筑,用于倒置保护的高阶拓扑超导体

Kitaev Building-block Construction for Inversion-Protected Higher-order Topological Superconductors

论文作者

Zhang, Rui-Xing, Sau, Jay D., Sarma, S. Das

论文摘要

我们提出了一个通用的理论框架,用于使用Kitaev构建块构建和诊断为反转的高阶高阶超导体,这是Kitaev一维主要模型的高维概括。对于给定的晶体对称性,Kitaev构建块是完整的基础,以构建满足对称要求的所有可能的Kitaev超导体。我们得出了一个简单而强大的Majorana计数规则,可以明确诊断所有Kitaev超导体的高阶拓扑存在。我们预计,这种真实空间的诊断能够在该对称类别中的一般二维高阶拓扑超导体中起作用。作为概念证明,我们使用Kitaev构建块确定了两种不等的堆叠策略,我们基于我们构建了具有对称性Protecetd Majorana角落模式的最小紧密结合模型。此外,我们已经成功地应用了诊断,以在具有脆弱的缺陷阻塞的超导体模型中理解Majoraana Corner Physcis,这证实了我们理论的有效性超出了Kitaev限制。我们的作品为从真实空间的角度解释高阶拓扑超导的方式铺平了道路。

We propose a general theoretical framework for both constructing and diagnosing inversion-protected higher-order topological superconductors using Kitaev building blocks, a higher-dimensional generalization of Kitaev's one-dimensional Majorana model. For a given crystalline symmetry, the Kitaev building blocks serve as a complete basis to construct all possible Kitaev superconductors that satisfy the symmetry requirements. We derive a simple yet powerful Majorana counting rule that can unambiguously diagnose the existence of higher-order topology for all Kitaev superconductors. We expect this real-space diagnosis to work for general two-dimensional higher-order topological superconductors within this symmetry class. As proof of concept, we have identified two inequivalent stacking strategies using the Kitaev building blocks, based on which we have constructed minimal tight-binding models with symmetry-protecetd Majorana corner modes. Moreover, we have successfully applied our diagnosis to comprehend the Majorana corner physcis in a superconductor model with a fragile Wannier obstruction, confirming the validity of our theory beyond the Kitaev limit. Our work paves the way for interpreting higher-order topological superconductivity from the real-space perspective.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源