论文标题
精确的机器学习大气检索通过神经网络替代模型用于辐射转移
Accurate Machine Learning Atmospheric Retrieval via a Neural Network Surrogate Model for Radiative Transfer
论文作者
论文摘要
大气检索基于其测得的光谱确定大气的性质。外部球星观测的低信噪比需要采用贝叶斯方法来确定每个模型参数的后验概率分布,给定观察到的光谱。该推断在计算上很昂贵,因为它需要为每组采样模型参数进行许多代价的辐射传输(RT)模拟。最近已显示机器学习(ML)可显着降低检索的运行时,主要是通过训练预测参数分布的逆ML模型,但给定观察到的光谱,尽管后验精度降低。在这里,我们通过训练一个前向ML替代模型来提出一种新的检索方法,该模型可以预测给定模型参数的光谱,从而提供了快速的近似RT模拟,该模拟可以在常规的贝叶斯检索框架中使用,而不会明显丧失准确性。我们证明了我们关于HD 189733 B发射光谱的方法,并与贝叶斯大气辐射转移(BART)代码(Bhattacharyya系数为0.9843--0.9972)之间的传统检索非常吻合,平均为0.9925,为0.9925,在1D杂粒之间)。这种准确性是在与传统RT相比的速度提高的同时,尽管不如ML后验精度较低的ML方法。当在AMD EPYC 7402p中央处理单元(CPU)上运行时,我们的方法比BART快〜9倍。使用NVIDIA TITAN XP图形处理单元的神经网络计算比该CPU上的BART快90--180倍。
Atmospheric retrieval determines the properties of an atmosphere based on its measured spectrum. The low signal-to-noise ratio of exoplanet observations require a Bayesian approach to determine posterior probability distributions of each model parameter, given observed spectra. This inference is computationally expensive, as it requires many executions of a costly radiative transfer (RT) simulation for each set of sampled model parameters. Machine learning (ML) has recently been shown to provide a significant reduction in runtime for retrievals, mainly by training inverse ML models that predict parameter distributions, given observed spectra, albeit with reduced posterior accuracy. Here we present a novel approach to retrieval by training a forward ML surrogate model that predicts spectra given model parameters, providing a fast approximate RT simulation that can be used in a conventional Bayesian retrieval framework without significant loss of accuracy. We demonstrate our method on the emission spectrum of HD 189733 b and find good agreement with a traditional retrieval from the Bayesian Atmospheric Radiative Transfer (BART) code (Bhattacharyya coefficients of 0.9843--0.9972, with a mean of 0.9925, between 1D marginalized posteriors). This accuracy comes while still offering significant speed enhancements over traditional RT, albeit not as much as ML methods with lower posterior accuracy. Our method is ~9x faster per parallel chain than BART when run on an AMD EPYC 7402P central processing unit (CPU). Neural-network computation using an NVIDIA Titan Xp graphics processing unit is 90--180x faster per chain than BART on that CPU.