论文标题
较高的离散均匀图组
Higher discrete homotopy groups of graphs
论文作者
论文摘要
本文研究了Barcelo等人介绍的图形的离散同质理论。我们证明了两个主要结果。首先,我们表明,如果$ g $是包含3个或4个周期的图表,那么对于所有$ n \ geq 2 $来说,$ n $ th th $ th ph th phose group $ a_n(g)$都是微不足道的。第二,我们为每个$ n \ geq 1 $ a天然同构$ψ:a_n(g)\ to \ mathcal {h} _n(g)$,其中$ \ nathcal {h} _n(g)$是$ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ thristical singular singular singular singular singular singular singular singular singular sing $ g $ $ \ MATHCAL {H} _n(g)$是非平地的,$ψ$是溢流的。因此,对于每个$ n \ geq 1 $,都有$ a_n(g)$的图形$ g $。
This paper studies a discrete homotopy theory for graphs introduced by Barcelo et al. We prove two main results. First we show that if $G$ is a graph containing no 3- or 4-cycles, then the $n$th discrete homotopy group $A_n(G)$ is trivial for all $n\geq 2$. Second we exhibit for each $n\geq 1$ a natural homomorphism $ψ:A_n(G)\to \mathcal{H}_n(G)$, where $\mathcal{H}_n(G)$ is the $n$th discrete cubical singular homology group, and an infinite family of graphs $G$ for which $\mathcal{H}_n(G)$ is nontrivial and $ψ$ is surjective. It follows that for each $n\geq 1$ there are graphs $G$ for which $A_n(G)$ is nontrivial.