论文标题

关于Berwald Finsler空位的无可分割性

On the non metrizability of Berwald Finsler spacetimes

论文作者

Fuster, Andrea, Heefer, Sjors, Pfeifer, Christian, Voicu, Nicoleta

论文摘要

我们研究了Szabo的Metrizanity Therorem是否可以扩展到无限期签名的Finsler空间。对于平稳,积极的确定的Finsler指标,这个重要的定理指出,如果该指标是Berwald类型(即,其Chern-Rund连接定义了基础歧管上的仿射连接),那么它与Riemann的空间相当,这意味着其封闭的连接是其levi-civita是某些Riemann Metrric的连接。我们首次表明,此结果并未扩展到Finsler的空间。更确切地说,我们发现了一大批Berwald的空间,仿射连接的Ricci张量不是对称的。与正确定的鳍空间相比,使这种不对称性成为可能的基本差异是,通常,Finsler Spacetime仅在狭缝切线切线束的适当圆锥子集上满足某些平滑度。确实,我们证明,当Finsler Lagrangian在整个缝隙切线束上平滑时,Ricci张量必须是对称的。但是,对于大量的Finsler空间,Berwald的特性并不意味着仿射结构等于伪里曼尼亚指标的仿射结构。取而代之的是,仿射结构是公制的植入几何形状和消失的扭转的几何形状。

We investigate whether Szabo's metrizability theorem can be extended to Finsler spaces of indefinite signature. For smooth, positive definite Finsler metrics, this important theorem states that, if the metric is of Berwald type (i.e., its Chern-Rund connection defines an affine connection on the underlying manifold), then it is affinely equivalent to a Riemann space, meaning that its affine connection is the Levi-Civita connection of some Riemannian metric. We show for the first time that this result does not extend to Finsler spacetimes. More precisely, we find a large class of Berwald spacetimes for which the Ricci tensor of the affine connection is not symmetric. The fundamental difference from positive definite Finsler spaces that makes such an asymmetry possible, is the fact that generally, Finsler spacetimes satisfy certain smoothness properties only on a proper conic subset of the slit tangent bundle. Indeed, we prove that when the Finsler Lagrangian is smooth on the entire slit tangent bundle, the Ricci tensor must necessarily be symmetric. For large classes of Finsler spacetimes, however, the Berwald property does not imply that the affine structure is equivalent to the affine structure of a pseudo-Riemannian metric. Instead, the affine structure is that of metric-affine geometry with vanishing torsion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源