论文标题
在由无限组件矢量自旋生成的开放式dicke型模型上
On the open Dicke-type model generated by an infinite-component vector spin
论文作者
论文摘要
我们考虑一个开放的DICKE模型,该模型包括单个无限组件矢量自旋和单模谐波振荡器,该模型通过Jaynes--cummings-type之间的相互作用连接。该开放量子模型称为OISD(开放的无限组件旋转dicke)模型。研究了OISD liouvillian的代数结构,以作用于密度矩阵空间的超级载体来研究。获得了明确的可逆超级操纵器(确切地说,是完全积极的痕迹贴纸),将Oisd liouvillian转换为两个独立的liouvillians的总和,一个仅由衣服的旋转产生,另一个仅由着装的谐波振荡器产生。 OISD liouvillian产生的时间演变在渐近上等同于由调整后的解耦liouvillian产生的,并具有一些自旋的同步频率和谐波振荡器。这种渐近等效性意味着在存在任何(微小)耗散的情况下,OISD模型的时间演变完全消散。
We consider an open Dicke model comprising a single infinite-component vector spin and a single-mode harmonic oscillator which are connected by Jaynes--Cummings-type interaction between them. This open quantum model is referred to as the OISD (Open Infinite-component Spin Dicke) model. The algebraic structure of the OISD Liouvillian is studied in terms of superoperators acting on the space of density matrices. An explicit invertible superoperator (precisely, a completely positive trace-preserving map) is obtained that transforms the OISD Liouvillian into a sum of two independent Liouvillians, one generated by a dressed spin only, the other generated by a dressed harmonic oscillator only. The time evolution generated by the OISD Liouvillian is shown to be asymptotically equivalent to that generated by an adjusted decoupled Liouvillian with some synchronized frequencies of the spin and the harmonic oscillator. This asymptotic equivalence implies that the time evolution of the OISD model dissipates completely in the presence of any (tiny) dissipation.