论文标题
布尔克霍夫(Riemann Zeta)功能的Birkhoff总和在布尔型转换上的中心限制定理
A Central limit theorem for the Birkhoff sum of the Riemann zeta-function over a Boolean type transformation
论文作者
论文摘要
我们证明了对真实和虚构部分的中心限制定理,以及沿临界条中的垂直线采样的Riemann Zeta功能的绝对值,相对于类似于布尔变换的厄尔贡转换。该结果补充了史蒂迪(Steuding)对同一系统证明了很大数字的强大定律的结果。作为侧面结果,我们陈述了一个一般的中央限制定理,用于在相同的沿着相同的沿阵行转换上的真实线上的一类无界观测值。证明基于转移操作员方法。
We prove a central limit theorem for the real and imaginary part and the absolute value of the Riemann zeta-function sampled along a vertical line in the critical strip with respect to an ergodic transformation similar to the Boolean transformation. This result complements a result by Steuding who has proven a strong law of large numbers for the same system. As a side result we state a general central limit theorem for a class of unbounded observables on the real line over the same ergodic transformation. The proof is based on the transfer operator method.