论文标题
用替代杂质的石墨烯的能量光谱和电导率
The energy spectrum and the electrical conductivity of graphene with substitution impurity
论文作者
论文摘要
在LIFSHITZ单电子紧密结合模型中研究了取代原子对能量光谱和石墨烯的电导率的影响。可以确定的是,杂质原子的排序会导致宽度取决于顺序参数和散射势的大小的电子能量光谱的间隙。结果表明,如果顺序参数接近其最大值,则在能量间隙边缘的电子状态密度的能量曲线上存在与局部杂质状态相关的峰。在Fermi水平进入间隙区域的电子浓度下,电导率为零,并且金属二电跃迁发生。如果费米水平落在能带的区域,则当订单参数达到其最大值时,电子松弛时间和电导率趋于无穷大。将电子密度和石墨烯的电导率的分析计算(在弱散射的限制情况下进行)与不同散射电位的数值计算结果进行了比较。
The effect of substitution atoms on the energy spectrum and the electrical conductivity of graphene was investigated in a Lifshitz one-electron tight-binding model. It is established that the ordering of impurity atoms results in a gap in the energy spectrum of electrons whose width depends on the order parameter and on the magnitude of the scattering potential. It is shown that if the order parameter is close to its maximum value, there are peaks associated with localized impurity states on the energy curve of the electron states density at the edges of the energy gap. At the electron concentration at which the Fermi level enters the gap region, the electrical conductivity is zero, and the metal-dielectric transition occurs. If the Fermi level falls in the region of the energy band, the electron relaxation time and electrical conductivity tend to infinity when the order parameter reaches its maximum value. The analytical calculations of the electron density and of the electrical conductivity of graphene, made in the limiting case of weak scattering, are compared with the results of the numerical calculations for different scattering potentials.