论文标题

通过边缘案例有效统计验证以评估高度自动化的车辆

Efficient statistical validation with edge cases to evaluate Highly Automated Vehicles

论文作者

Karunakaran, Dhanoop, Worrall, Stewart, Nebot, Eduardo

论文摘要

尽管有许多安全挑战尚未解决,但自动驾驶汽车(AV)的广泛部署似乎迫在眉睫。众所周知,没有普遍商定的验证和验证(VV)方法可以保证绝对安全,这对于接受这项技术至关重要。现有的标准专注于确定性过程,其中验证仅需要一组涵盖要求的测试用例。现代自动驾驶汽车无疑将包括机器学习和概率技术,这些技术需要由于操作设计领域的非确定性而需要更全面的测试制度。严格的统计验证过程是应对此挑战所需的重要组成部分。该领域的大多数研究都侧重于评估大规模现实数据收集练习(行进的里程数)或模拟中随机测试方案的系统性能。 本文提出了一种新的方法来计算系统行为的统计特征,通过自动生成的测试用例偏向最坏情况,确定潜在的不安全边缘案例。我们使用强化增强学习(RL)来学习模拟参与者的行为,从而导致良好建立的RSS Safety RSS Safety Mafetrics衡量的不安全行为。我们证明,通过使用该方法,我们可以通过将模拟聚焦到最坏情况下的模拟来更有效地验证系统,从而生成与不安全情况相对应的边缘案例。

The widescale deployment of Autonomous Vehicles (AV) seems to be imminent despite many safety challenges that are yet to be resolved. It is well known that there are no universally agreed Verification and Validation (VV) methodologies to guarantee absolute safety, which is crucial for the acceptance of this technology. Existing standards focus on deterministic processes where the validation requires only a set of test cases that cover the requirements. Modern autonomous vehicles will undoubtedly include machine learning and probabilistic techniques that require a much more comprehensive testing regime due to the non-deterministic nature of the operating design domain. A rigourous statistical validation process is an essential component required to address this challenge. Most research in this area focuses on evaluating system performance in large scale real-world data gathering exercises (number of miles travelled), or randomised test scenarios in simulation. This paper presents a new approach to compute the statistical characteristics of a system's behaviour by biasing automatically generated test cases towards the worst case scenarios, identifying potential unsafe edge cases.We use reinforcement learning (RL) to learn the behaviours of simulated actors that cause unsafe behaviour measured by the well established RSS safety metric. We demonstrate that by using the method we can more efficiently validate a system using a smaller number of test cases by focusing the simulation towards the worst case scenario, generating edge cases that correspond to unsafe situations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源