论文标题
使用经过合成深度数据训练的密集对象描述符学习绳索操纵策略
Learning Rope Manipulation Policies Using Dense Object Descriptors Trained on Synthetic Depth Data
论文作者
论文摘要
由于缺乏高保真分析模型和较大的配置空间,机器人对可变形1D对象(例如绳索,电缆和软管)的操作具有挑战性。此外,直接从图像和物理互动中学习端到端的操纵策略需要在机器人上大量时间,并且可能无法跨任务概括。我们使用可解释的深层视觉表示来解决这些挑战,以扩展有关机器人操纵密集对象描述符的最新工作。这有助于设计在学识渊博的表示形式之上构建的可解释和可转移的几何政策,从而取消视觉推理和控制。我们提出了一种方法,该方法了解初始绳索配置和目标绳索配置之间的点对应对应关系,该方法隐含地编码了几何结构,完全是在合成深度图像的模拟中。我们证明,通过从演示中学习或使用可解释的几何形状策略,可以使用学习的表示形式 - 密集的深度对象描述符(DDODS) - 将真实的绳索操纵为各种不同的布置。在使用ABB Yumi机器人进行打结任务的50次试验中,该系统从以前看不见的配置中获得了66%的结式成功率。有关补充材料和视频,请参见https://tinyurl.com/rope-learning。
Robotic manipulation of deformable 1D objects such as ropes, cables, and hoses is challenging due to the lack of high-fidelity analytic models and large configuration spaces. Furthermore, learning end-to-end manipulation policies directly from images and physical interaction requires significant time on a robot and can fail to generalize across tasks. We address these challenges using interpretable deep visual representations for rope, extending recent work on dense object descriptors for robot manipulation. This facilitates the design of interpretable and transferable geometric policies built on top of the learned representations, decoupling visual reasoning and control. We present an approach that learns point-pair correspondences between initial and goal rope configurations, which implicitly encodes geometric structure, entirely in simulation from synthetic depth images. We demonstrate that the learned representation -- dense depth object descriptors (DDODs) -- can be used to manipulate a real rope into a variety of different arrangements either by learning from demonstrations or using interpretable geometric policies. In 50 trials of a knot-tying task with the ABB YuMi Robot, the system achieves a 66% knot-tying success rate from previously unseen configurations. See https://tinyurl.com/rope-learning for supplementary material and videos.