论文标题

VAR和CVAR FORDATA驱动随机需求反应拍卖的共同控制

Co-Control of VaR and CVaR forData-Driven Stochastic Demand Response Auction

论文作者

Roveto, Matt, Mieth, Robert, Dvorkin, Yury

论文摘要

从投资组合管理到动力工程的各种学科中,在不确定性下做出最佳决策的能力仍然很重要。这通常意味着在不确定参数上应用一些安全余量,只能通过一组有限的历史样本可以观察到。然而,优化的决策必须对所有可能的结果都具有弹性,同时理想地提供了一些潜在违规的严重程度。因此,本文开发了一种共同控制与CVAR相关的价值风险(VAR)水平的方法,以确保可能在可能的情况下进行弹性,同时在不太可能的情况下提供了平均违规的度量。为了进一步打击不确定性,使用Wasserstein Metric以分布稳健的方式扩展了CVAR和VAR共控制,以建立由有限样本构成的歧义集,该集合可以保证以一定的置信度包含真正的分布。

The ability to make optimal decisions under uncertainty remains important across a variety of disciplines from portfolio management to power engineering. This generally implies applying some safety margins on uncertain parameters that may only be observable through a finite set of historical samples. Nevertheless, the optimized decisions must be resilient to all probable outcomes, while ideally providing some measure of severity of any potential violations in the less probable outcomes.It is known that the conditional value-at-risk (CVaR) can be used to quantify risk in an optimization task, though may also impose overly conservative margins. Therefore, this paper develops a means of co-controlling the value-at-risk (VaR) level associated with the CVaR to guarantee resilience in probable cases while providing a measure of the average violation in less probable cases. To further combat uncertainty, the CVaR and VaR co-control is extended in a distributionally robust manner using the Wasserstein metric to establish an ambiguity set constructed from finite samples, which is guaranteed to contain the true distribution with a certain confidence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源