论文标题
二维轴突绝缘子中的巨型线性偏振光效应和第二次谐波产生
Giant linearly-polarized photogalvanic effect and second harmonic generation in two-dimensional axion insulators
论文作者
论文摘要
二阶非线性光学(NLO)过程,例如光钙效应和二阶谐波生成(SHG),在探测和控制能量和设备应用的光结合相互作用中起着至关重要的作用。迄今为止,大多数对二阶NLO过程的研究都集中在空间反转对称性破裂的材料上,例如适当的铁电和非中心对称Weyl半法。然而,shubnikov基团的反转对称性可以通过中心对称晶体中的自旋顺序折断。不幸的是,这些材料不太常见,它们的NLO反应通常很弱。结合量子扰动理论和第一原理模拟,我们预测了新兴轴突绝缘子家族中的巨型注射 - 电流光钙化效应和SHG,即MNBI2TE4(MBT)材料的均匀隔层层,表现出零层状量子量子量子的量子(QAH)效果。它们的注射电流和SHG的幅度大约比广泛使用的铁电基因(例如BifeO3和Linbo3)大两个数量级。此外,与在圆形光照光下观察到的通常的注射电流不同,MBT的注射光电流仅在线性极化的光线下出现,从而使其方便用于设备应用。这些独特的字符来自平均时间对称性,三倍旋转对称性和显着的自旋轨道耦合的组合效果。这些增强的NLO效应对于表征QAH系统中微妙的拓扑秩序非常有价值,并且还阐明了基于磁性拓扑材料的新型红外光探测器和光伏应用。
The second-order nonlinear optical (NLO) processes, such as the photogalvanic effect and second-order harmonic generation (SHG), play crucial roles in probing and controlling light-matter interactions for energy and device applications. To date, most studies of second-order NLO processes focus on materials with broken spatial inversion symmetry, such as proper ferroelectrics and noncentrosymmetric Weyl semimetals. Nevertheless, inversion symmetry of Shubnikov groups can be broken via spin-ordering in centrosymmetric crystals. Unfortunately, these materials are less common, and their NLO responses are usually weak. Combining quantum perturbation theory and first-principles simulations, we predict a giant injection-current photogalvanic effect and SHG in a family of emerging axion insulators, the even septuple layers of MnBi2Te4 (MBT) materials that exhibit the zero-plateau quantum anomalous Hall (QAH) effect. Their amplitudes of injection current and SHG are about two orders of magnitude larger than those of widely used ferroelectrics, such as BiFeO3 and LiNbO3. Moreover, unlike the usual injection current observed under circularly-polarized light, the injection photocurrent of MBTs only emerges under linearly polarized light, making it convenient for device applications. These unique characters are from a combination effect of parity-time symmetry, three-fold rotation symmetry, and significant spin-orbit coupling. These enhanced NLO effects are valuable for characterizing subtle topological orders in QAH systems and also shed light on novel infrared photo-detector and photovoltaic applications based on magnetic topological materials.