论文标题

一个新的数据集,Poisson Gan和Aquanet,用于抓取水下物体

A New Dataset, Poisson GAN and AquaNet for Underwater Object Grabbing

论文作者

Liu, Chongwei, Wang, Zhihui, Wang, Shijie, Tang, Tao, Tao, Yulong, Yang, Caifei, Li, Haojie, Liu, Xing, Fan, Xin

论文摘要

为了提高水下机器人的捕获能力进行开放式耕作,我们提出了一个新的数据集(UDD),该数据集由三类(Seacucumber,Seaurchin和Scallop)组成,并提供2,227张图像。据我们所知,这是在真正的开放式农场收集的第一个4K HD数据集。我们还提出了一个新颖的泊松式融合生成对抗网络(Poisson gan)和有效的对象检测网络(Aquanet),以解决相关数据集中的两个常见问题:类别不足问题和质量小对象的问题。具体而言,Poisson Gan将Poisson融合到其发电机中,并采用了一种称为双重限制损失(DR损失)的新损失,该损失在训练过程中监督隐式空间特征和图像级特征以生成更真实的图像。通过利用Poisson gan,可以自然地将少数群体或扇贝等少数群体的物体添加到图像中,这可能会增加训练探测器期间少数类别的损失,以消除班级不平衡问题; Aquanet是一个高效检测器,可解决从多云的水下图片中检测质量小物体的问题。在其中,我们设计了两个有效的组件:基于深度卷积的多尺度上下文特征融合(MFF)块和一个多尺度的糊状采样(MBP)模块,以将网络参数降低到130万。这两个组件都可以在短的主干配置下提供小物体的多尺度特征,而不会丧失准确性。此外,我们通过UDD的Poisson Gan构建了一个大规模的增强数据集(AUDD)和一个预培训数据集。广泛的实验表明了拟议的泊松GAN,Aquanet,UDD,AUDD和预培训数据集的有效性。

To boost the object grabbing capability of underwater robots for open-sea farming, we propose a new dataset (UDD) consisting of three categories (seacucumber, seaurchin, and scallop) with 2,227 images. To the best of our knowledge, it is the first 4K HD dataset collected in a real open-sea farm. We also propose a novel Poisson-blending Generative Adversarial Network (Poisson GAN) and an efficient object detection network (AquaNet) to address two common issues within related datasets: the class-imbalance problem and the problem of mass small object, respectively. Specifically, Poisson GAN combines Poisson blending into its generator and employs a new loss called Dual Restriction loss (DR loss), which supervises both implicit space features and image-level features during training to generate more realistic images. By utilizing Poisson GAN, objects of minority class like seacucumber or scallop could be added into an image naturally and annotated automatically, which could increase the loss of minority classes during training detectors to eliminate the class-imbalance problem; AquaNet is a high-efficiency detector to address the problem of detecting mass small objects from cloudy underwater pictures. Within it, we design two efficient components: a depth-wise-convolution-based Multi-scale Contextual Features Fusion (MFF) block and a Multi-scale Blursampling (MBP) module to reduce the parameters of the network to 1.3 million. Both two components could provide multi-scale features of small objects under a short backbone configuration without any loss of accuracy. In addition, we construct a large-scale augmented dataset (AUDD) and a pre-training dataset via Poisson GAN from UDD. Extensive experiments show the effectiveness of the proposed Poisson GAN, AquaNet, UDD, AUDD, and pre-training dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源