论文标题
通过XAI可视化了解情感的预测机制
Understanding the Prediction Mechanism of Sentiments by XAI Visualization
论文作者
论文摘要
人们经常依靠在线评论做出购买决策。目前的工作旨在通过可视化从在线酒店评论中提取的情感的效果(XAI)方法来了解机器学习模型的预测机制。研究1使用提取的情感作为特征,以预测五种机器学习算法(KNN,CART决策树,支持向量机,随机森林,梯度提升机)的评价,并确定随机森林为最佳算法。研究2通过特征的重要性分析了随机森林模型,并揭示了喜悦,厌恶,积极和消极的观点,作为最预测的特征。此外,对五星级等级的方向和效应大小的可视化及其预测分布显示了正确的预测,但部分错误的方向,但对于1星级等级而言,效果不足和效果大小不足。这些预测细节通过对四个顶级特征的何种分析来证实。总之,可以通过可视化特定的观察结果来发现机器学习模型的预测机制。比较对比鲜明的地面真实价值的实例可以画出预测机制的差异图片,并为改进模型的决策提供了建议。
People often rely on online reviews to make purchase decisions. The present work aimed to gain an understanding of a machine learning model's prediction mechanism by visualizing the effect of sentiments extracted from online hotel reviews with explainable AI (XAI) methodology. Study 1 used the extracted sentiments as features to predict the review ratings by five machine learning algorithms (knn, CART decision trees, support vector machines, random forests, gradient boosting machines) and identified random forests as best algorithm. Study 2 analyzed the random forests model by feature importance and revealed the sentiments joy, disgust, positive and negative as the most predictive features. Furthermore, the visualization of additive variable attributions and their prediction distribution showed correct prediction in direction and effect size for the 5-star rating but partially wrong direction and insufficient effect size for the 1-star rating. These prediction details were corroborated by a what-if analysis for the four top features. In conclusion, the prediction mechanism of a machine learning model can be uncovered by visualization of particular observations. Comparing instances of contrasting ground truth values can draw a differential picture of the prediction mechanism and inform decisions for model improvement.