论文标题
基于孤子晶体Kerr Microcomb,用于高速,可扩展,光学神经网络的单个光子感染
Single photonic perceptron based on a soliton crystal Kerr microcomb for high-speed, scalable, optical neural networks
论文作者
论文摘要
光学人工神经网络(ONN),用于机器学习的模拟计算硬件,具有超高计算速度和能源效率的巨大潜力。我们为基于集成的KERR微型BOMB源提供了一种新的ONN体系结构方法,该方法可编程,高度可扩展并且能够达到超高速度。我们通过将突触映射到49个微栓的波长中,以每个绒布的8位以8位的高度,对应于95.2 gbps,从而实验证明了单个神经元感知的构建块,即单个神经元感知。我们在简单的标准基准数据集,手写数字识别和癌细胞检测上测试了感知器,分别达到了90%和85%的精度。该性能是连贯的集成微梳源的记录小波长间距(49GHz)的直接结果,这导致神经态光学元件的波长数量前所未有。最后,我们提出了一种使用相同的单个微型轰炸设备和标准现成的电信技术来将感知器扩展到深度学习网络的方法,用于高通量操作,涉及用于应用程序的完整矩阵乘法,例如无人驾驶汽车和飞机跟踪的实时大规模数据处理。
Optical artificial neural networks (ONNs), analog computing hardware tailored for machine learning, have significant potential for ultra-high computing speed and energy efficiency. We propose a new approach to architectures for ONNs based on integrated Kerr micro-comb sources that is programmable, highly scalable and capable of reaching ultra-high speeds. We experimentally demonstrate the building block of the ONN, a single neuron perceptron, by mapping synapses onto 49 wavelengths of a micro-comb to achieve a high single-unit throughput of 11.9 Giga-FLOPS at 8 bits per FLOP, corresponding to 95.2 Gbps. We test the perceptron on simple standard benchmark datasets, handwritten-digit recognition and cancer-cell detection, achieving over 90% and 85% accuracy, respectively. This performance is a direct result of the record small wavelength spacing (49GHz) for a coherent integrated microcomb source, which results in an unprecedented number of wavelengths for neuromorphic optics. Finally, we propose an approach to scaling the perceptron to a deep learning network using the same single micro-comb device and standard off-the-shelf telecommunications technology, for high-throughput operation involving full matrix multiplication for applications such as real-time massive data processing for unmanned vehicle and aircraft tracking.