论文标题

Med7:电子健康记录的可转移临床自然语言处理模型

Med7: a transferable clinical natural language processing model for electronic health records

论文作者

Kormilitzin, Andrey, Vaci, Nemanja, Liu, Qiang, Nevado-Holgado, Alejo

论文摘要

自引入深度学习模型以来,临床自然语言处理领域已经大大提高。自我监督的表示学习和转移学习范式成为许多自然语言处理应用中的首选方法,尤其是在缺乏高质量手动注释数据的情况下。电子健康记录系统无处不在,并且大多数患者的数据现在是通过电子方式收集的,尤其是以自由文本的形式收集。医疗概念和信息提取的识别是一项具有挑战性的任务,但对于将非结构化数据解析为下游分析任务的结构化和列表格式的重要组成部分。在这项工作中,我们引入了一种临床自然语言处理的指定实体识别模型。该模型经过训练可以识别七个类别:毒品名称,路线,频率,剂量,强度,形式,持续时间。该模型首先是通过预测下一个单词来预先训练的,使用了200万自由文本患者的记录,从模仿III Corpora中进行了良好的记录,然后对命名实体识别任务进行了微调。该模型在所有七个类别中达到了0.957(0.893)的宽大(严格)微平均得分。此外,我们使用来自美国重症监护病房的数据对开发模型的可传递性评估了英国的二级护理心理健康记录(CRIS)。训练有素的NER模型在CRIS数据中的直接应用导致F1 = 0.762的性能降低,但是在CRIS的小样本进行微调后,该模型的合理性能的合理性能为F1 = 0.944。这表明,尽管数据集和NER任务之间有着密切的相似性,但必须对目标域数据进行微调以获得更准确的结果。

The field of clinical natural language processing has been advanced significantly since the introduction of deep learning models. The self-supervised representation learning and the transfer learning paradigm became the methods of choice in many natural language processing application, in particular in the settings with the dearth of high quality manually annotated data. Electronic health record systems are ubiquitous and the majority of patients' data are now being collected electronically and in particular in the form of free text. Identification of medical concepts and information extraction is a challenging task, yet important ingredient for parsing unstructured data into structured and tabulated format for downstream analytical tasks. In this work we introduced a named-entity recognition model for clinical natural language processing. The model is trained to recognise seven categories: drug names, route, frequency, dosage, strength, form, duration. The model was first self-supervisedly pre-trained by predicting the next word, using a collection of 2 million free-text patients' records from MIMIC-III corpora and then fine-tuned on the named-entity recognition task. The model achieved a lenient (strict) micro-averaged F1 score of 0.957 (0.893) across all seven categories. Additionally, we evaluated the transferability of the developed model using the data from the Intensive Care Unit in the US to secondary care mental health records (CRIS) in the UK. A direct application of the trained NER model to CRIS data resulted in reduced performance of F1=0.762, however after fine-tuning on a small sample from CRIS, the model achieved a reasonable performance of F1=0.944. This demonstrated that despite a close similarity between the data sets and the NER tasks, it is essential to fine-tune on the target domain data in order to achieve more accurate results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源