论文标题

距离近似和跨度的大量平行算法

Massively Parallel Algorithms for Distance Approximation and Spanners

论文作者

Biswas, Amartya Shankha, Dory, Michal, Ghaffari, Mohsen, Mitrović, Slobodan, Nazari, Yasamin

论文摘要

在过去的十年中,对于处理大规模图的分布式/平行算法一直存在越来越多的兴趣。到目前为止,对于大量并行计算(MPC)模型中的许多基本图问题,我们通常具有相当快的算法 - 通常是sublogarithmic时间,通常是$ poly(\ log \ log n)$,甚至更快的时间。该模型是MAPREDUCE样式设置的广泛补充的理论抽象,其中许多机器以全能的方式进行交流以处理大规模数据。在MPC图算法上的这一工作中,我们在poly(\ log \ log \ log n)$圆形MPC算法中介绍了用于计算$ o的$ o(k^{1+{o(1)})$ - 以强烈倍增本地记忆的跨度均值。据我们所知,这些是第一个用于Spanner Construction的Sublogarithmic Time MPC算法。作为跨越的主要应用,我们得到了两个重要含义,如下所示: - 对于MPC设置,我们获得了$ O(\ log^2 \ log n)$ - $ o(\ log^{1+o(1)} n)$ o(log^{1+o(1)n)$的$近似于本地内存的近乎线性的最短路径(APSP)。据我们所知,这是第一个用于距离近似值的Sublogarithmic MPC算法。 - 上述结果还扩展到了分布式计算的拥挤集团模型,具有相同的复杂性和近似保证。这给出了第一个用于在拥挤集团模型中加权图中近似APSP的亚属性算法。

Over the past decade, there has been increasing interest in distributed/parallel algorithms for processing large-scale graphs. By now, we have quite fast algorithms -- usually sublogarithmic-time and often $poly(\log\log n)$-time, or even faster -- for a number of fundamental graph problems in the massively parallel computation (MPC) model. This model is a widely-adopted theoretical abstraction of MapReduce style settings, where a number of machines communicate in an all-to-all manner to process large-scale data. Contributing to this line of work on MPC graph algorithms, we present $poly(\log k) \in poly(\log\log n)$ round MPC algorithms for computing $O(k^{1+{o(1)}})$-spanners in the strongly sublinear regime of local memory. To the best of our knowledge, these are the first sublogarithmic-time MPC algorithms for spanner construction. As primary applications of our spanners, we get two important implications, as follows: -For the MPC setting, we get an $O(\log^2\log n)$-round algorithm for $O(\log^{1+o(1)} n)$ approximation of all pairs shortest paths (APSP) in the near-linear regime of local memory. To the best of our knowledge, this is the first sublogarithmic-time MPC algorithm for distance approximations. -Our result above also extends to the Congested Clique model of distributed computing, with the same round complexity and approximation guarantee. This gives the first sub-logarithmic algorithm for approximating APSP in weighted graphs in the Congested Clique model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源