论文标题
能源模型的自动驾驶 - 自动生成可再生供应曲线,小时容量因素和每小时的合成电力需求
An autopilot for energy models -- automatic generation of renewable supply curves, hourly capacity factors and hourly synthetic electricity demand for arbitrary world regions
论文作者
论文摘要
能源系统模型越来越多地用于探索具有可变可再生能源大量股份的场景。这需要高空间和时间分辨率的输入数据,并在建模团队中给大量的预处理负担增加。在这里,我们提出了一个新的代码集,该代码设置具有开源许可证,用于自动生成全球任意区域的大规模能源系统模型,包括次国家区域,以及电力系统的相关通用容量扩展模型。我们使用ECMWF ERA5全球重新分析数据以及其他公共地理空间数据集来生成详细的供应曲线和太阳能光伏电源,集中的太阳能,陆上和离岸风能以及现有和未来水电的小时容量因素。此外,我们使用一种机器学习方法来生成综合小时电力需求系列,以描述当前需求,我们使用区域SSP方案扩展到未来几年。最后,我们的代码集自动生成相邻区域之间HVDC互连的成本和损失。基于代码生成的输入数据,几种不同的案例研究证明了我们方法的有用性。我们表明,尽管我们使用全球数据集和合成需求,但我们的未来欧洲电力系统的模型与更详细的模型的结果一致。
Energy system models are increasingly being used to explore scenarios with large shares of variable renewables. This requires input data of high spatial and temporal resolution and places a considerable preprocessing burden on the modeling team. Here we present a new code set with an open source license for automatic generation of input data for large-scale energy system models for arbitrary regions of the world, including sub-national regions, along with an associated generic capacity expansion model of the electricity system. We use ECMWF ERA5 global reanalysis data along with other public geospatial datasets to generate detailed supply curves and hourly capacity factors for solar photovoltaic power, concentrated solar power, onshore and offshore wind power, and existing and future hydropower. Further, we use a machine learning approach to generate synthetic hourly electricity demand series that describe current demand, which we extend to future years using regional SSP scenarios. Finally, our code set automatically generates costs and losses for HVDC interconnections between neighboring regions. The usefulness of our approach is demonstrated by several different case studies based on input data generated by our code. We show that our model runs of a future European electricity system with high share of renewables are in line with results from more detailed models, despite our use of global datasets and synthetic demand.