论文标题

MNO和NIO的大动量下计算出的和实验性中子衍射强度的比较

A comparison of computed and experimental neutron diffraction intensity at large momentum for MnO and NiO

论文作者

Munoz, Alexander R., Kish, Lazar, Lu, Kannan, Heitmann, Thomas, MacDougall, Gregory J., Wagner, Lucas K.

论文摘要

磁性中子散射测量自旋旋转相关性,提供有关远程自旋顺序以及磁性材料中自旋密度的形状的信息。同样,详细的第一原理计算直接计算材料中的自旋密度。在这项工作中,作者仔细地将实验测量的磁中子强度与三个理论级别进行了比较:两个近似值的密度功能理论和固定节点扩散蒙特卡洛。虽然每个理论对于简单的抗fiferromagnet MNO的性能相似,但密度功能理论与Nio中的扩散蒙特卡洛之间存在显着差异。对于这两种材料,固定节点扩散蒙特卡洛都显示出相对于外形和强度实验的最低RMS误差。通过将强度和形态因子与真实空间自旋密度的连接连接,可以表明,通过将旋转从粘结方向传播,扩散的蒙特卡洛旋转密度变得更加扩散。当考虑从头算在捕获磁系统的远程磁相关和微观自旋细节方面,该基准是重要的。

Magnetic neutron scattering measures spin-spin correlations giving information about the long-range spin order as well as the shape of the spin density in magnetic materials. Similarly, detailed first principles calculations directly compute the spin density in materials. In this work, the authors carefully compare experimentally measured magnetic neutron intensities to three levels of theory: density functional theory in two approximations, and fixed-node diffusion Monte Carlo. While each theory performs similarly for the simple antiferromagnet MnO, there are significant differences between density functional theory and diffusion Monte Carlo in NiO. For both materials, fixed-node diffusion Monte Carlo shows the lowest RMS error with respect to experiment for the form factor and the intensity. Through connection of the intensities and form factors to the real-space spin densities, it is shown that diffusion Monte Carlo spin density becomes more diffuse by spreading spin away from the bond directions. This benchmark is of importance when considering the efficacy of an ab initio calculation in capturing both the long-range magnetic correlations and the microscopic spin details of magnetic systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源