论文标题

用于不完整面板计数数据的强大功能EM算法

A Robust Functional EM Algorithm for Incomplete Panel Count Data

论文作者

Moreno, Alexander, Wu, Zhenke, Yap, Jamie, Wetter, David, Lam, Cho, Nahum-Shani, Inbal, Dempsey, Walter, Rehg, James M.

论文摘要

面板数数据描述了在离散时间点观察到的复发事件的汇总计数。为了了解健康行为的动态,定量行为研究领域已经演变为越来越多地依赖于通过多个自我报告收集的面板计数数据,例如,关于使用移动设备上的弹力调查的吸烟频率。但是,缺少的报告很常见,并构成了下游统计学习的主要障碍。作为第一步,在完全假设的完全丢失(MCAR)下,我们提出了一种简单但广泛适用的功能EM算法来估计计数过程平均函数,这对行为科学家来说是核心利益。所提出的方法包含了几种流行的小组计数推理方法,无缝处理不完整的计数,并且可以误解泊松过程假设。对拟议算法的理论分析通过将参数EM理论扩展到我们的一般非参数设置,提供了有限样本的保证。我们通过数值实验和戒烟数据分析了所提出的算法的实用性。我们还讨论了有用的扩展,以解决与MCAR假设和协变量效应的偏差。

Panel count data describes aggregated counts of recurrent events observed at discrete time points. To understand dynamics of health behaviors, the field of quantitative behavioral research has evolved to increasingly rely upon panel count data collected via multiple self reports, for example, about frequencies of smoking using in-the-moment surveys on mobile devices. However, missing reports are common and present a major barrier to downstream statistical learning. As a first step, under a missing completely at random assumption (MCAR), we propose a simple yet widely applicable functional EM algorithm to estimate the counting process mean function, which is of central interest to behavioral scientists. The proposed approach wraps several popular panel count inference methods, seamlessly deals with incomplete counts and is robust to misspecification of the Poisson process assumption. Theoretical analysis of the proposed algorithm provides finite-sample guarantees by expanding parametric EM theory to our general non-parametric setting. We illustrate the utility of the proposed algorithm through numerical experiments and an analysis of smoking cessation data. We also discuss useful extensions to address deviations from the MCAR assumption and covariate effects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源