论文标题
漂流质量容纳系数:稳态分子动力学设置的原位测量
Drifting mass accommodation coefficients: in situ measurements from a steady state molecular dynamics setup
论文作者
论文摘要
对蒸发/冷凝现象的基本理解对于许多科学和工程领域至关重要,但是相位变化模型和相关系数的使用情况存在很大差异。首先,简要回顾了相变的动力学理论,并讨论了质量适应系数(MAC,$α$)及其不一致的定义。讨论的重点是脱离平衡。表示为宏观“漂移”速度。然后,使用相变的连续流动驱动的分子动力学设置用于研究各种相变速率和温度下氩气的平坦液体蒸气界面的稳态冷凝,以阐明平衡偏离的影响。 MAC直接根据动力学理论计算,基于Hertz-Knudsen(H-K)和Schrage(精确和近似)表达式,而无需先验物理定义,临时粒子注入/去除或粒子计数。 MAC值从近似和精确的schrage表达式($α_{app}^{schrage} $和$α_{eckect}^{schrage} $)介于0.8和0.9之间,而H-K表达式($α^{h-kk} $)的MAC值对所有情况进行了测试。 $α_{extcrip}^{schrage} $得出最接近过渡状态理论结果的值[J Chem Phys,118,1392-1399(2003)]。脱离平衡不会影响$α_{eckent}^{schrage} $的值,但会导致$α^{h-k} $极大地强调漂移速度校正的重要性。另外,平衡出发导致蒸气特性中的分布不均匀。在冷凝界面上,与相应的体积值相比,观察到蒸气温度的局部升高和蒸气密度下降。
A fundamental understanding of the evaporation/condensation phenomena is vital to many fields of science and engineering, yet there is much discrepancy in the usage of phase change models and associated coefficients. First, a brief review of kinetic theory of phase change is provided, and the mass accommodation coefficient (MAC, $α$) and its inconsistent definitions are discussed. The discussion focuses on the departure from equilibrium; represented as a macroscopic "drift" velocity. Then a continuous flow, phase change driven molecular dynamics setup is used to investigate steady state condensation at a flat liquid-vapor interface of argon at various phase change rates and temperatures to elucidate the effect of equilibrium departure. MAC is computed directly from the kinetic theory based Hertz-Knudsen (H-K) and Schrage (exact and approximate) expressions without the need for a priori physical definitions, ad hoc particle injection/removal or particle counting. MAC values determined from the approximate and exact Schrage expressions ($α_{app}^{Schrage}$ and $α_{exact}^{Schrage}$) are between 0.8 and 0.9, while MAC values from the H-K expression ($α^{H-K}$) are above unity for all cases tested. $α_{exact}^{Schrage}$ yields values closest to the results from transition state theory [J Chem Phys, 118, 1392-1399 (2003)]. The departure from equilibrium does not affect the value of $α_{exact}^{Schrage}$ but causes $α^{H-K}$ to vary drastically emphasizing the importance of a drift velocity correction. Additionally, equilibrium departure causes a non-uniform distribution in vapor properties. At the condensing interface, a local rise in vapor temperature and a drop in vapor density are observed when compared with the corresponding bulk values.