论文标题

$ k $ -nn规则在公制空间和长田维度的普遍一致性

Universal consistency of the $k$-NN rule in metric spaces and Nagata dimension

论文作者

Collins, Benoît, Kumari, Sushma, Pestov, Vladimir G.

论文摘要

$ k $最近的邻居学习规则(在统一距离领带的破裂下)在每一个度量$ x $中都是一致的。 Cérou和Guyader(2006)指出了这一点,这是这些作者的主要结果,并结合了D. Preiss(1971)绘制的真实分析中的定理(并由Assouad和Quentin de Gromard(2006)详细详细介绍)。我们表明,可以与Charles J. Stone(1977)的原始定理进行直接证明,介绍$ K $ -NN分类器在有限的维度欧几里得空间中的普遍一致性。概括是非平凡的,因为距离在非欧国人的设置中更为普遍,并且在我们研究指标的相关几何特性和石头参数的局限性上,通过构造各种示例。

The $k$ nearest neighbour learning rule (under the uniform distance tie breaking) is universally consistent in every metric space $X$ that is sigma-finite dimensional in the sense of Nagata. This was pointed out by Cérou and Guyader (2006) as a consequence of the main result by those authors, combined with a theorem in real analysis sketched by D. Preiss (1971) (and elaborated in detail by Assouad and Quentin de Gromard (2006)). We show that it is possible to give a direct proof along the same lines as the original theorem of Charles J. Stone (1977) about the universal consistency of the $k$-NN classifier in the finite dimensional Euclidean space. The generalization is non-trivial because of the distance ties being more prevalent in the non-euclidean setting, and on the way we investigate the relevant geometric properties of the metrics and the limitations of the Stone argument, by constructing various examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源