论文标题

优化的多元网络中的清洁生产:通过一卷骰子运营管理

Cleaner Production in Optimized Multivariate Networks: Operations Management through a Roll of Dice

论文作者

Chattopadhyay, Amit K, Debnath, Biswajit, El-Hassani, Rihab, Ghosh, Sadhan Kumar, Baidya, Rahul

论文摘要

供应链管理在分析和后来催化经济期望的同时优先考虑清洁生产方面的重要性是现代金融的重要组成部分。但是,由于困扰大多数业务决策的无处不在的不确定性,这种预测通常不准确。从定义供应链(SC)内核的可持续性的多维成本函数开始,本文概述了一个4组件SC模块 - 环境,需求,经济和社会不确定性 - 每个人都根据其个人体重进行排名。然后,我们的数学模型通过首先按照主观重要性对潜在的随机变量进行排名,然后优化由实用程序功能定义的成本内核,从而评估可持续业务的生存能力。然后,该模型将确定验证企业可持续性的条件(作为方程式)。排名最初是从分析层次过程中获得的。然后对最终的加权成本功能进行了优化,以根据我们的供应链模型分析市场不确定性的影响。然后,根据中小企业数据对模型预测进行批准,以强调清洁生产在业务策略中的重要性。

The importance of supply chain management in analyzing and later catalyzing economic expectations while simultaneously prioritizing cleaner production aspects is a vital component of modern finance. Such predictions, though, are often known to be less than accurate due to the ubiquitous uncertainty plaguing most business decisions. Starting from a multi-dimensional cost function defining the sustainability of the supply chain (SC) kernel, this article outlines a 4-component SC module - environmental, demand, economic, and social uncertainties - each ranked according to its individual weight. Our mathematical model then assesses the viability of a sustainable business by first ranking the potentially stochastic variables in order of their subjective importance, and then optimizing the cost kernel, defined from a utility function. The model will then identify conditions (as equations) validating the sustainability of a business venture. The ranking is initially obtained from an Analytical Hierarchical Process; the resultant weighted cost function is then optimized to analyze the impact of market uncertainty based on our supply chain model. Model predictions are then ratified against SME data to emphasize the importance of cleaner production in business strategies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源