论文标题

Madan:用于域适应的多源对抗域聚集网络

MADAN: Multi-source Adversarial Domain Aggregation Network for Domain Adaptation

论文作者

Zhao, Sicheng, Li, Bo, Yue, Xiangyu, Xu, Pengfei, Keutzer, Kurt

论文摘要

域的适应性旨在学习一个可转移的模型,以弥合一个标记的源域和另一个稀疏标记或未标记的目标域之间的域移动。由于可以从多个来源收集标记的数据,因此多源域适应性(MDA)引起了人们越来越多的关注。最近的MDA方法不考虑来源和目标之间的像素级比对,也不考虑不同来源之间的未对准。在本文中,我们提出了一个新颖的MDA框架来应对这些挑战。具体而言,我们设计了端到端的多源对抗域聚合网络(MADAN)。首先,为每个源生成一个具有动态语义一致性的适应域,同时以像素级循环一致地对准目标。其次,提出了子域聚集鉴别因子和跨域循环鉴别器,以使不同的适应域更紧密地聚集。最后,在训练任务网络时,在聚合域和目标域之间执行功能级对齐。对于细分适应,我们进一步执行类别级别的对齐,并结合了构成Madan+的上下文感知的生成。我们对数字识别,对象分类和模拟到现实的语义分割进行了广泛的MDA实验。结果表明,拟议的Madan和Manda+模型以大幅度优于最先进的方法。

Domain adaptation aims to learn a transferable model to bridge the domain shift between one labeled source domain and another sparsely labeled or unlabeled target domain. Since the labeled data may be collected from multiple sources, multi-source domain adaptation (MDA) has attracted increasing attention. Recent MDA methods do not consider the pixel-level alignment between sources and target or the misalignment across different sources. In this paper, we propose a novel MDA framework to address these challenges. Specifically, we design an end-to-end Multi-source Adversarial Domain Aggregation Network (MADAN). First, an adapted domain is generated for each source with dynamic semantic consistency while aligning towards the target at the pixel-level cycle-consistently. Second, sub-domain aggregation discriminator and cross-domain cycle discriminator are proposed to make different adapted domains more closely aggregated. Finally, feature-level alignment is performed between the aggregated domain and the target domain while training the task network. For the segmentation adaptation, we further enforce category-level alignment and incorporate context-aware generation, which constitutes MADAN+. We conduct extensive MDA experiments on digit recognition, object classification, and simulation-to-real semantic segmentation. The results demonstrate that the proposed MADAN and MANDA+ models outperform state-of-the-art approaches by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源