论文标题
稀疏集和最小电路尺寸问题的硬度
Hardness of Sparse Sets and Minimal Circuit Size Problem
论文作者
论文摘要
我们在有限字段上开发了多项式方法,以扩大随机流模型上非确定时间复杂性类中备用集的硬度。我们的结果之一表明,如果存在$ 2^{n^{o(1)}} $ - 在$ ntime(2^{n^{o(1)})$中设置的稀疏设置,该$没有任何随机流algorithm带有$ n^{o(1)} $更新时间的随机流algorithm $ f(n)$ - 稀疏集是一种最多具有$ f(n)$ n $ $ n $的语言。我们还表明,如果MCSP为$ ZPP $ - 在多项式时间真相表减少下,则$ exp \ not = zpp $。
We develop a polynomial method on finite fields to amplify the hardness of spare sets in nondeterministic time complexity classes on a randomized streaming model. One of our results shows that if there exists a $2^{n^{o(1)}}$-sparse set in $NTIME(2^{n^{o(1)}})$ that does not have any randomized streaming algorithm with $n^{o(1)}$ updating time, and $n^{o(1)}$ space, then $NEXP\not=BPP$, where a $f(n)$-sparse set is a language that has at most $f(n)$ strings of length $n$. We also show that if MCSP is $ZPP$-hard under polynomial time truth-table reductions, then $EXP\not=ZPP$.