论文标题
通过基于得分的生成建模来置换不变的图生成
Permutation Invariant Graph Generation via Score-Based Generative Modeling
论文作者
论文摘要
用于图形结构数据的学习生成模型具有挑战性,因为图是离散的,组合的,并且基础数据分布在节点的排序中不变。但是,大多数现有的图形生成模型并不是所选订购的不变,这可能会导致学习分布的不良偏见。为了解决这个困难,我们使用基于分数的生成性建模的最新框架提出了一种置换不变方法来建模图。特别是,我们设计了置换式的多通道图神经网络,以建模输入图中数据分布的梯度(又称分数函数)。梯度的置换模型模型隐含地定义了图形的置换不变分布。我们将此图神经网络训练得分匹配,并用退火的Langevin Dynamics训练该图。在我们的实验中,我们首先演示了这种新体系结构在学习离散图算法中的能力。对于图形生成,我们发现我们的学习方法与基准数据集上的现有模型更好或可比的结果。
Learning generative models for graph-structured data is challenging because graphs are discrete, combinatorial, and the underlying data distribution is invariant to the ordering of nodes. However, most of the existing generative models for graphs are not invariant to the chosen ordering, which might lead to an undesirable bias in the learned distribution. To address this difficulty, we propose a permutation invariant approach to modeling graphs, using the recent framework of score-based generative modeling. In particular, we design a permutation equivariant, multi-channel graph neural network to model the gradient of the data distribution at the input graph (a.k.a., the score function). This permutation equivariant model of gradients implicitly defines a permutation invariant distribution for graphs. We train this graph neural network with score matching and sample from it with annealed Langevin dynamics. In our experiments, we first demonstrate the capacity of this new architecture in learning discrete graph algorithms. For graph generation, we find that our learning approach achieves better or comparable results to existing models on benchmark datasets.