论文标题

在超专门的阿贝尔表面之间计算richelot的同基因

Counting Richelot isogenies between superspecial abelian surfaces

论文作者

Katsura, Toshiyuki, Takashima, Katsuyuki

论文摘要

Castryck,depu和Smith使用了Superspecial属-2曲线及其Richelot等值映射图来基于Genus-2等速密码学,最近,Costello和Smith在GenUS-2设置中设计了一种改进的等质激素途径求解算法。为了建立密码结构和分析的牢固基础,我们根据{\ em涉及涉及的自动形态学}属属(\ em)在有限的领域的{\ em涉及的自动形态学}方面给出了新的表征表面。作为推论,我们在Castryck等人的论文中给出了定理2的另一代代数几何证明。

Castryck, Decru, and Smith used superspecial genus-2 curves and their Richelot isogeny graph for basing genus-2 isogeny cryptography, and recently, Costello and Smith devised an improved isogeny path-finding algorithm in the genus-2 setting. In order to establish a firm ground for the cryptographic construction and analysis, we give a new characterization of {\em decomposed Richelot isogenies} in terms of {\em involutive reduced automorphisms} of genus-2 curves over a finite field, and explicitly count such decomposed (and non-decomposed) Richelot isogenies between {\em superspecial} principally polarized abelian surfaces. As a corollary, we give another algebraic geometric proof of Theorem 2 in the paper of Castryck et al.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源