论文标题

通过刚性位置控制的机器人的学习力控制,用于接触量丰富的操纵任务

Learning Force Control for Contact-rich Manipulation Tasks with Rigid Position-controlled Robots

论文作者

Beltran-Hernandez, Cristian Camilo, Petit, Damien, Ramirez-Alpizar, Ixchel G., Nishi, Takayuki, Kikuchi, Shinichi, Matsubara, Takamitsu, Harada, Kensuke

论文摘要

强化学习(RL)方法已被证明在自动解决操纵任务方面已被证明是成功的。但是,RL在实际机器人系统上仍未被广泛采用,因为使用实际硬件需要其他挑战,尤其是在使用刚性位置控制的操作器时。这些挑战包括需要强大的控制器来避免不希望的行为,可能会损害机器人及其环境以及对人类操作员的持续监督。这项工作的主要贡献是,首先,我们提出了一个基于学习的力控制框架,将RL技术与传统力量控制相结合。在上述控制方案中,我们实施了两种不同的常规方法,以通过位置控制的机器人来控制力控制。一个是修改的并行位置/力控制,另一个是入场控制。其次,当将两种控制方案用作RL药物的动作空间时,我们都会从经验上研究两种控制方案。第三,我们开发了一种故障安全机制,用于使用真正的刚性机器人操纵器安全地训练RL代理进行操纵任务。所提出的方法在模拟和真实机器人(UR3 E系列机器人臂)上进行了验证。

Reinforcement Learning (RL) methods have been proven successful in solving manipulation tasks autonomously. However, RL is still not widely adopted on real robotic systems because working with real hardware entails additional challenges, especially when using rigid position-controlled manipulators. These challenges include the need for a robust controller to avoid undesired behavior, that risk damaging the robot and its environment, and constant supervision from a human operator. The main contributions of this work are, first, we proposed a learning-based force control framework combining RL techniques with traditional force control. Within said control scheme, we implemented two different conventional approaches to achieve force control with position-controlled robots; one is a modified parallel position/force control, and the other is an admittance control. Secondly, we empirically study both control schemes when used as the action space of the RL agent. Thirdly, we developed a fail-safe mechanism for safely training an RL agent on manipulation tasks using a real rigid robot manipulator. The proposed methods are validated on simulation and a real robot, an UR3 e-series robotic arm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源