论文标题

通过Tutte多项式证明了分层树的重量多项式的身份

Proving identities on weight polynomials of tiered trees via Tutte polynomials

论文作者

Dong, Fengming, Yan, Sherry H. F.

论文摘要

a {\ it s层图} $ g =(v,e)$带有$ m $ tiers是一个简单的图表,带有$ v \ subseteq \ brk {n} $,其中$ \ brk {n} = \ {1,2,\ {1,2,\ cdots,n \ cdots,n \} $,以及$ t $ t $ t $ t $ t $ br} $ v> v'$,然后$ t(v)> t(v')$附近的$ v'$ in $ g $ in $ v'$ in $ g $。对于任何有序分区$ p =(p_1,p_2,\ cdots,p_m)$ $ n $的$,令$ \ sett_p $表示带有顶点$ \ brk {n} $的一组分层树,并用map $ t:$ t:\ brk {n}对于所有$ i = 1,2,\ ldots,m $。对于\ sett_p $中的任何$ t \,令$ k_t $表示完整的分层图,其顶点集和分层映射与$ t $相同。如果$ k_t $的边缘是按其终点订购的,那么$ t $的重量$ w(t)$是$ t $的外部活动,即$ k_t $,即,e(k_ {t})\ setminus e(t)$ e $ e $ e $ e $ e $ e $ e $ n unique $ t in Unique the Unique the Unique the Unique the Unique the Unique the Unique the Unique the Unique the Unique the Unique the Unique the Unique the Unique ccyp the $ e(t)。令$ p_p(q)= \ sum_ {t \ in \ sett_ {p}} q^{w(t)} $。 Dugan,Glennon,Gunnells和Steingrímsson[J。组合。理论,Ser。 A 164(2019)pp。24-49]要求提供任何置换$π$ $ 1,2,\ cdots,m $,werr $π(p)= p_ {π(1)},p_ {π(2)},\ cdots,p_ {π(m)})$。在本文中,我们将通过应用Tutte多项式来证明这种身份的扩展。此外,我们还提供了身份的证明$ p _ {(1,p_1,p_2)}(q)= p _ {(p_1+1,p_2+1)}(q)$ via tutte polynomials。

A {\it tiered graph} $G=(V,E)$ with $m $ tiers is a simple graph with $V\subseteq \brk{n}$, where $\brk{n}=\{1,2,\cdots,n\}$, and with a surjective map $t$ from $V$ to $\brk{m}$ such that if $v$ is a vertex adjacent to $v'$ in $G$ with $v>v'$, then $t(v) >t(v')$. For any ordered partition $p=(p_1,p_2,\cdots,p_m)$ of $n$, let $\sett_p$ denote the set of tiered trees with vertex set $\brk{n}$ and with a map $t: \brk{n}\rightarrow \brk{m}$ such that $|t^{-1}(i)|=p_i$ for all $i=1,2,\ldots,m$. For any $T\in \sett_p$, let $K_T$ denote the complete tiered graph whose vertex set and tiering map are the same as those of $T$. If the edges of $K_T$ are ordered lexicographically by their endpoints, then the weight $w(T)$ of $T$ is the external activity of $T$ in $K_T$, i.e., the number of edges $e\in E(K_{T})\setminus E(T)$ such that $e$ is the least element in the unique cycle determined by $T\cup e$. Let $P_p(q)=\sum_{T\in \sett_{p}}q^{w(T)}$. Dugan, Glennon, Gunnells and Steingrímsson [J. Combin. Theory, Ser. A 164 (2019) pp. 24-49] asked for an elementary proof of the identity $P_p(q)=P_{π(p)}(q)$ for any permutation $π$ of $1,2,\cdots,m$, where $π(p)=p_{π(1)},p_{π(2)},\cdots,p_{π(m)})$. In this article, we will prove an extension of this identity by applying Tutte polynomials. Furthermore, we also provide a proof of the identity $P_{(1,p_1,p_2)}(q)=P_{(p_1+1,p_2+1)}(q)$ via Tutte polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源