论文标题

癌细胞运动模型中的粘附驱动模式

Adhesion-driven patterns in a calcium-dependent model of cancer cell movement

论文作者

Kaouri, Katerina, Bitsouni, Vasiliki, Buttenschön, Andreas, Thul, Rüdiger

论文摘要

癌细胞表现出增加的运动性和增殖,这对肿瘤和转移的形成起到了作用。这些病理变化可以追溯到细胞信号通路的故障,而钙信号在其中起着重要作用。我们制定了一种新的癌细胞运动模型,该模型首次明确说明了细胞增殖和细胞 - 细胞粘附对钙的依赖性。我们工作的核心是用于癌细胞运动的非线性,全差异(非本地)方程,这是细胞扩散,对流和增殖的解释。我们还采用了既定的细胞钙信号传导模型,其中包括丰富的动力库,其中包括实验观察到的周期波列和孤立脉冲。癌细胞密度表现出由粘附驱动的不稳定性(ADI)引起的流行前线和复杂的空间模式。我们展示了细胞 - 细胞吸引力和排斥强度的不同钙信号和变化如何形成新兴的细胞聚集模式,这是转移过程的关键组成部分。进行线性稳定性分析,我们确定与ADI相对应的参数区域。这些区域通过数值模拟证实,这些模拟也揭示了不同类型的聚集模式,并且这些模式受\ ca的显着影响。我们的研究表明,最大细胞密度随钙浓度而降低,而在许多情况下,钙振荡和细胞密度振荡的频率大致相等。此外,随着钙水平提高行进前沿的速度,这与较高的癌症入侵潜力有关。这些新颖的见解为设计新的癌症治疗的设计提供了一步,这些癌症治疗可能依赖于控制细胞钙的动力学。

Cancer cells exhibit increased motility and proliferation, which are instrumental in the formation of tumours and metastases. These pathological changes can be traced back to malfunctions of cellular signalling pathways, and calcium signalling plays a prominent role in these. We formulate a new model for cancer cell movement which for the first time explicitly accounts for the dependence of cell proliferation and cell-cell adhesion on calcium. At the heart of our work is a non-linear, integro-differential (non-local) equation for cancer cell movement, accounting for cell diffusion, advection and proliferation. We also employ an established model of cellular calcium signalling with a rich dynamical repertoire that includes experimentally observed periodic wave trains and solitary pulses. The cancer cell density exhibits travelling fronts and complex spatial patterns arising from an adhesion-driven instability (ADI). We show how the different calcium signals and variations in the strengths of cell-cell attraction and repulsion shape the emergent cellular aggregation patterns, which are a key component of the metastatic process. Performing a linear stability analysis, we identify parameter regions corresponding to ADI. These regions are confirmed by numerical simulations, which also reveal different types of aggregation patterns and these patterns are significantly affected by \ca. Our study demonstrates that the maximal cell density decreases with calcium concentration, while the frequencies of the calcium oscillations and the cell density oscillations are approximately equal in many cases. Furthermore, as the calcium levels increase the speed of the travelling fronts increases, which is related to a higher cancer invasion potential. These novel insights provide a step forward in the design of new cancer treatments that may rely on controlling the dynamics of cellular calcium.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源