论文标题

旋转轨道相互作用和自旋选择性,用于DNA中的隧道电子转移

Spin-orbit interaction and spin selectivity for tunneling electron transfer in DNA

论文作者

Varela, Solmar, Zambrano, Iskra, Berche, Bertrand, Mujica, Vladimiro, Medina, Ernesto

论文摘要

在生物分子(例如肽和蛋白质)中的电子转移(ET)由通过隧道过程在定义明确的局部状态(受体供体)之间移动的电子组成。在这里,我们在存在自旋轨道(SO)相互作用的情况下,通过在DNA中的隧穿来介绍ET的分析模型,以产生具有内在的原子SO在MEV范围内的固有原子的强旋不对称性。我们获得了与DNA碱基上$π$轨道的电荷传输一致的哈密顿量,并得出ET的行为作为注射态动量,自旋轨道耦合以及屏障的长度和强度的函数。出现了一个高度一致的场景,其中出现了两种伴随的自旋选择机制。自旋干扰和差异自旋振幅衰减。高自旋滤波可以以降低的幅度传输为代价进行,假设旋转轨道耦合的逼真值。旋转过滤方案是通过解决屏障下的自旋依赖性扭矩来完成的,对旋转电流具有一致的保守定义。

Electron transfer (ET) in biological molecules such as peptides and proteins consists of electrons moving between well defined localized states (donors to acceptors) through a tunneling process. Here we present an analytical model for ET by tunneling in DNA, in the presence of Spin-Orbit (SO) interaction, to produce a strong spin asymmetry with the intrinsic atomic SO strength in meV range. We obtain a Hamiltonian consistent with charge transport through $π$ orbitals on the DNA bases and derive the behavior of ET as a function of the injection state momentum, the spin-orbit coupling and barrier length and strength. A highly consistent scenario arises where two concomitant mechanisms for spin selection arises; spin interference and differential spin amplitude decay. High spin filtering can take place at the cost of reduced amplitude transmission assuming realistic values for the spin-orbit coupling. The spin filtering scenario is completed by addressing the spin dependent torque under the barrier, with a consistent conserved definition for the spin current.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源