论文标题

反应扩散方程的乘法可控性,与有限的零超平面相平行

Multiplicative controllability of the reaction-diffusion equation on a parallelepiped with finitely many zero hyperplanes

论文作者

Khapalov, Alexander

论文摘要

我们研究了平行的$ω=(a_1,b_1)\ times \ ldots(a_n,b_n)\ subset r^n $,在平行的$ω=(a_1,b_1)\ times \ ldots(a_1,b_1)\ times \ ldots(a_1,b_1)\ times r^n $中的全局近似可控性。假定初始状态$ u_0 $仅在$ω$与有限的许多超级平面的交叉点上接收零,与$ω$的侧面平行,而$ u_0 $平行于跨越此类超平面后的标志(我们进一步将它们称为“符号变化”或“零超植物的变化”)。可以将本文视为\ cite {cankh,cankh2}中提出的工作的延续,以使用有限的许多零零的解决方案的一个维反应扩散方程的可控性。但是,\ cite {cankh,cankh2}的方法本质上是一维的,而在本文中,我们引入了一种新的方法来处理多个空间变量的情况。

We study the global approximate controllability of the reaction-diffusion equation in a parallelpiped $ Ω= (a_1,b_1 ) \times \ldots (a_n,b_n) \subset R^n $, governed by a multiplicative control in a reaction term. It is assumed that the initial state $ u_0 $ admits zeros only on the intersections of $ Ω$ with finitely many hyperplanes, parallel to the sides of $ Ω$, and that $ u_0$ changes its sign after crossing such hyperplanes (we further refer to them as the "hyperplanes of change of sign" or "zero hyperplanes"). This paper can be viewed as a continuation of work presented in \cite{CanKh, CanKh2} for the controllability of the one dimensional reaction-diffusion equation with solutions admitting finitely many zeros. However, the methods of \cite{CanKh, CanKh2} are intrinsically one dimensional, while in this paper we introduce a novel approach to deal with the case of multiple spatial variables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源