论文标题
基于自我的结构表示的熵措施
Ego-based Entropy Measures for Structural Representations
论文作者
论文摘要
在复杂的网络中,具有相似结构特征的节点通常表现出相似的角色(例如,社交网络中的用户类型或员工在公司中的层次结构位置)。为了利用这种关系,越来越多的文献提出了识别结构等效节点的潜在表示。但是,大多数现有方法都需要较高的时间和空间复杂性。在本文中,我们提出了Vnestruct,这是一种生成低维结构节点嵌入的简单方法,这既是时间效率又适合图形结构的扰动。所提出的方法着重于每个节点的当地邻居,并采用信息理论工具的Von Neumann Entropy来提取捕获邻里拓扑的功能。此外,在图形分类任务上,我们建议利用生成的结构嵌入将属性的图形结构转换为一组增强节点属性。从经验上讲,我们观察到,所提出的方法对结构角色识别任务和图形分类任务的最新性能表现出鲁棒性,同时保持非常高的计算速度。
In complex networks, nodes that share similar structural characteristics often exhibit similar roles (e.g type of users in a social network or the hierarchical position of employees in a company). In order to leverage this relationship, a growing literature proposed latent representations that identify structurally equivalent nodes. However, most of the existing methods require high time and space complexity. In this paper, we propose VNEstruct, a simple approach for generating low-dimensional structural node embeddings, that is both time efficient and robust to perturbations of the graph structure. The proposed approach focuses on the local neighborhood of each node and employs the Von Neumann entropy, an information-theoretic tool, to extract features that capture the neighborhood's topology. Moreover, on graph classification tasks, we suggest the utilization of the generated structural embeddings for the transformation of an attributed graph structure into a set of augmented node attributes. Empirically, we observe that the proposed approach exhibits robustness on structural role identification tasks and state-of-the-art performance on graph classification tasks, while maintaining very high computational speed.