论文标题
分解Syzygies的简单同源性和亚辅助性
Breaking up Simplicial Homology and Subadditivity of Syzygies
论文作者
论文摘要
我们考虑以下问题:如果简单的复杂$δ$具有$ d $ - 人类学,那么相应的$ d $ cycle总是会诱导较小尺寸的周期,而不是$δ$的边界?我们在固定维度中为此问题提供答案。我们使用同源性的破裂来显示在固定同源度下单一理想的最大程度的亚加性特性。
We consider the following question: if a simplicial complex $Δ$ has $d$-homology, then does the corresponding $d$-cycle always induce cycles of smaller dimension that are not boundaries in $Δ$? We provide an answer to this question in a fixed dimension. We use the breaking of homology to show the subadditivity property for the maximal degrees of syzygies of monomial ideals in a fixed homological degree.