论文标题
关键的Galton-Watson分支过程,具有无限多种类型和无限的第二矩
Critical Galton-Watson branching processes with countably infinitely many types and infinite second moments
论文作者
论文摘要
我们考虑了一个不可分解的Galton-Watson分支过程,具有无限多种类型。假设该过程至关重要,并且允许某些(或所有)颗粒的后代大小的无限差异,我们描述了该过程的生存概率的渐近行为,并为所有类型的粒子数量的无限二二型载体建立了yaglom型条件限制定理。
We consider an indecomposable Galton-Watson branching process with countably infinitely many types. Assuming that the process is critical and allowing for infinite variance of the offspring sizes of some (or all) types of particles we describe the asymptotic behavior of the survival probability of the process and establish a Yaglom-type conditional limit theorem for the infinite-dimensional vector of the number of particles of all types.