论文标题

实时多人运动捕获的4D关联图,使用多个摄像机

4D Association Graph for Realtime Multi-person Motion Capture Using Multiple Video Cameras

论文作者

Zhang, Yuxiang, An, Liang, Yu, Tao, Li, Xiu, Li, Kun, Liu, Yebin

论文摘要

本文使用多视频视频输入贡献了一种新颖的实时多人运动捕获算法。由于每个视图中的严重阻塞,多视图像和多个时间帧的关节优化是必不可少的,这带来了实时效率的基本挑战。为此,我们首次将每个视图的分析,跨视图匹配和时间跟踪统一为单个优化框架,即,每个维度(图像空间,观点和时间)可以同时且同时处理的4D关联图。为了有效地求解4D关联图,我们进一步根据启发式搜索来进一步贡献4D肢体束解析的想法,然后通过提出捆绑包Kruskal的算法来进行肢体束组装。我们的方法使实时在线运动捕获系统在5人场景上使用5个摄像机以30fps运行。从统一的解析,匹配和跟踪约束中受益,我们的方法对嘈杂的检测是可靠的,并且可以达到高质量的在线姿势重建质量。所提出的方法在不使用高级外观信息的情况下定量地优于最先进的方法。我们还贡献了一个与基于标记的运动捕获系统同步进行科学评估的多视频视频数据集。

This paper contributes a novel realtime multi-person motion capture algorithm using multiview video inputs. Due to the heavy occlusions in each view, joint optimization on the multiview images and multiple temporal frames is indispensable, which brings up the essential challenge of realtime efficiency. To this end, for the first time, we unify per-view parsing, cross-view matching, and temporal tracking into a single optimization framework, i.e., a 4D association graph that each dimension (image space, viewpoint and time) can be treated equally and simultaneously. To solve the 4D association graph efficiently, we further contribute the idea of 4D limb bundle parsing based on heuristic searching, followed with limb bundle assembling by proposing a bundle Kruskal's algorithm. Our method enables a realtime online motion capture system running at 30fps using 5 cameras on a 5-person scene. Benefiting from the unified parsing, matching and tracking constraints, our method is robust to noisy detection, and achieves high-quality online pose reconstruction quality. The proposed method outperforms the state-of-the-art method quantitatively without using high-level appearance information. We also contribute a multiview video dataset synchronized with a marker-based motion capture system for scientific evaluation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源