论文标题

零拍的视觉计划的幻觉拓扑记忆

Hallucinative Topological Memory for Zero-Shot Visual Planning

论文作者

Liu, Kara, Kurutach, Thanard, Tung, Christine, Abbeel, Pieter, Tamar, Aviv

论文摘要

在视觉计划(VP)中,代理商学会从离线获得的动态系统(例如,从自我监督的机器人相互作用获得的图像)中规划目标指导的行为。先前关于VP的大多数工作通过在学习的潜在空间中进行计划,从而解决了问题,从而导致视觉计划低和艰难的培训算法。相反,在这里,我们提出了一种直接在图像空间中计划并显示竞争性能的简单VP方法。我们基于半参数拓扑内存(SPTM)方法:图像样本被视为图中的节点,从图像序列数据中学到了图形连接,并且可以使用常规的图形搜索方法进行计划。我们建议对SPTM进行两次修改。首先,我们使用接受稳定训练的对比预测编码来训练基于能量的图形连接函数。其次,为了允许在新域中进行零射击计划,我们学习了一个有条件的VAE模型,该模型在给定域上下文的情况下生成图像,并使用这些幻觉样本来构建连接图和计划。我们表明,这种简单的方法在使用计划指导轨迹遵循控制器时,就计划可解释性和成功率而言,这种简单的方法显着优于最先进的VP方法。有趣的是,我们的方法可以拾取对象的非平凡视觉属性,例如它们的几何形状,并在计划中说明它。

In visual planning (VP), an agent learns to plan goal-directed behavior from observations of a dynamical system obtained offline, e.g., images obtained from self-supervised robot interaction. Most previous works on VP approached the problem by planning in a learned latent space, resulting in low-quality visual plans, and difficult training algorithms. Here, instead, we propose a simple VP method that plans directly in image space and displays competitive performance. We build on the semi-parametric topological memory (SPTM) method: image samples are treated as nodes in a graph, the graph connectivity is learned from image sequence data, and planning can be performed using conventional graph search methods. We propose two modifications on SPTM. First, we train an energy-based graph connectivity function using contrastive predictive coding that admits stable training. Second, to allow zero-shot planning in new domains, we learn a conditional VAE model that generates images given a context of the domain, and use these hallucinated samples for building the connectivity graph and planning. We show that this simple approach significantly outperform the state-of-the-art VP methods, in terms of both plan interpretability and success rate when using the plan to guide a trajectory-following controller. Interestingly, our method can pick up non-trivial visual properties of objects, such as their geometry, and account for it in the plans.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源