论文标题

$ c^*$ - 几乎有限群体产生的代数的严格比较

Strict comparison for $C^*$-algebras arising from Almost finite groupoids

论文作者

Ara, Pere, Bönicke, Christian, Bosa, Joan, Li, Kang

论文摘要

在本文中,我们表明,对于几乎有限的最小ampure groupoid $ g $,其减少的$ \ mathrm {c}^*$ - algebra $ c_r^*(g)$即使$ C_R^*(g)$也可能不是核核。此外,如果我们进一步假设$ g $也是第二个可计数和非元素,那么它的cuntz semigroup $ {\ rm cu}(c_r^*(g))$几乎是可分开的,$ {\ rm cu}(c_r^*(g))是规范上的命令,其中$ \ MATHCAL {z} $表示Jiang-Su代数。

In this paper we show that for an almost finite minimal ample groupoid $G$, its reduced $\mathrm{C}^*$-algebra $C_r^*(G)$ has real rank zero and strict comparison even though $C_r^*(G)$ may not be nuclear in general. Moreover, if we further assume $G$ being also second countable and non-elementary, then its Cuntz semigroup ${\rm Cu}(C_r^*(G))$ is almost divisible and ${\rm Cu}(C_r^*(G))$ and ${\rm Cu}(C_r^*(G)\otimes \mathcal{Z})$ are canonically order-isomorphic, where $\mathcal{Z}$ denotes the Jiang-Su algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源