论文标题

深层慢动作视频重建与混合成像系统

Deep Slow Motion Video Reconstruction with Hybrid Imaging System

论文作者

Paliwal, Avinash, Kalantari, Nima Khademi

论文摘要

慢动作视频越来越流行,但是以极高的帧速率捕获高分辨率视频需要专业的高速摄像头。为了减轻此问题,当前技术通过假设在挑战性案例中无效的线性对象运动来通过框架插值来提高标准视频的帧速率。在本文中,我们使用两个视频流作为输入来解决此问题。除标准主视频外,具有高框架速率和低空间分辨率的辅助视频,具有较低的帧速率和高空间分辨率。我们提出了一个两阶段的深度学习系统,该系统包括对齐和外观估计,该系统从混合视频输入中重建高分辨率慢动作视频。对于对齐方式,我们建议通过利用辅助视频框架的内容来计算缺失帧和主要视频现有帧之间的流量。为了进行外观估算,我们建议使用上下文和遮挡意识网络组合扭曲的辅助框架和辅助框架。我们在合成生成的混合视频上训练模型,并在各种测试场景上显示出高质量的结果。为了证明实用性,我们在两个带有小基线的真实双摄像头设置上显示了系统的性能。

Slow motion videos are becoming increasingly popular, but capturing high-resolution videos at extremely high frame rates requires professional high-speed cameras. To mitigate this problem, current techniques increase the frame rate of standard videos through frame interpolation by assuming linear object motion which is not valid in challenging cases. In this paper, we address this problem using two video streams as input; an auxiliary video with high frame rate and low spatial resolution, providing temporal information, in addition to the standard main video with low frame rate and high spatial resolution. We propose a two-stage deep learning system consisting of alignment and appearance estimation that reconstructs high resolution slow motion video from the hybrid video input. For alignment, we propose to compute flows between the missing frame and two existing frames of the main video by utilizing the content of the auxiliary video frames. For appearance estimation, we propose to combine the warped and auxiliary frames using a context and occlusion aware network. We train our model on synthetically generated hybrid videos and show high-quality results on a variety of test scenes. To demonstrate practicality, we show the performance of our system on two real dual camera setups with small baseline.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源