论文标题
系统耦合曲线演变的有限元近似,并规定了与固定边界的正常接触到曲线上反应扩散的固定接触
Finite element approximation of a system coupling curve evolution with prescribed normal contact to a fixed boundary to reaction-diffusion on the curve
论文作者
论文摘要
我们考虑了一个有限元近似值,该系统包括由曲线缩短的流量与反应曲线上的反应扩散方程相连的曲线演变而成的系统。曲线在给定的域内演变$ω\ subset \ mathbb {r}^2 $,并符合$ \ partialω$正交。耦合系统的方案基于[BDS17]和[DE98]中得出的方案。我们提出数值实验,并显示近似收敛的实验顺序。
We consider a finite element approximation for a system consisting of the evolution of a curve evolving by forced curve shortening flow coupled to a reaction-diffusion equation on the evolving curve. The curve evolves inside a given domain $Ω\subset \mathbb{R}^2$ and meets $\partial Ω$ orthogonally. The scheme for the coupled system is based on the schemes derived in [BDS17] and [DE98]. We present numerical experiments and show the experimental order of convergence of the approximation.