论文标题

量子纠缠的分数拓扑和曲率

Quantum Entangled Fractional Topology and Curvatures

论文作者

Hutchinson, Joel, Hur, Karyn Le

论文摘要

我们提出了一个两旋量子力学模型,其应用于庞加尔 - 布洛克球体上的施加磁场,以揭示一类新的拓扑能带,每个旋转1/2的Chern成立一半。该分数拓扑的背后机制是北极的两旋型产品状态,也是靠近南极的最大纠结状态。每个自旋的分数Chern数可以通过杆子的磁化测量。我们研究了一个精确的方案,其中旋转动态时间反映了与能带交叉效应相关的Landau-Zener物理。我们在蜂窝晶格上显示了两旋链系统和拓扑双层模型之间的对应关系。这些模型描述了围绕纠缠区域的淋巴结环的半学。

We propose a two-spin quantum-mechanical model with applied magnetic fields acting on the Poincaré-Bloch sphere, to reveal a new class of topological energy bands with Chern number one half for each spin-1/2. The mechanism behind this fractional topology is a two-spin product state at the north pole and a maximally entangled state close to the south pole. The fractional Chern number of each spin can be measured through the magnetizations at the poles. We study a precise protocol where the spin dynamics in time reflects the Landau-Zener physics associated with energy band crossing effects. We show a correspondence between the two-spin system and topological bilayer models on a honeycomb lattice. These models describe semimetals with a nodal ring surrounding the region of entanglement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源