论文标题

Anosov表示不适合对象的准时嵌入

Quasi-isometric embeddings inapproximable by Anosov representations

论文作者

Tsouvalas, Konstantinos

论文摘要

我们将单词双曲线组的准静电嵌入示例构建为$ \ Mathsf {sl}(d,d,\ Mathbb {r})$,对于$ d \ geqslant 5 $,这不是AnoSov表示的限制,而不是$ \ m athsf {slsf {slsf {sl}(d,d,\ m mathbbbb {r r})$。结果,我们得出的结论是,$ \ mathsf {psl}(2,\ mathbb {c})$的密度定理的类似于$ \ mathsf {slsf {sl}(d,\ mathbb {r})$时,当$ d \ d \ d \ geqqslant 5 $时不满。

We construct examples of quasi-isometric embeddings of word hyperbolic groups into $\mathsf{SL}(d,\mathbb{R})$ for $d \geqslant 5$ which are not limits of Anosov representations into $\mathsf{SL}(d,\mathbb{R})$. As a consequence, we conclude that an analogue of the density theorem for $\mathsf{PSL}(2,\mathbb{C})$ does not hold for $\mathsf{SL}(d,\mathbb{R})$ when $d \geqslant 5$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源