论文标题
搜索未来E $^+$ e $^ - $ COLLIDERS的惰性标量
Searching Inert Scalars at Future e$^+$e$^-$ Colliders
论文作者
论文摘要
惰性双线模型(IDM)是标准模型(SM)的最简单扩展之一,提供了暗物质候选者。这是一个具有离散$ z_2 $对称性的两个Higgs Doublet模型,可防止第二个Doublet(惰性标量)的标量从耦合到SM fermions,并使其最轻的稳定。我们研究了大量IDM方案,这些方案与目前有关暗物质的直接检测和遗物密度以及所有对撞机和低能限制的限制一致。我们提出了一组具有不同运动功能的基准点,该点有望在未来的$ e^+e^ - $ colliders上可检测的信号。考虑了两个惰性标量成配对过程,$ e^+e^ - \ to a〜h $和$ e^+e^ - \ to h^+h^ - $,随后是$ a $ a $ a $ a $ a $ a和$ h^\ pm的衰减到最终状态中,这些状态总是包括最轻,稳定的中性标量鳞片scalard scalar dark Matter $ h $ h $。研究了预期观测值的重要性,对于不同的基准模型和不同的跑步场景,质量质量为250 GEV至3 TEV的质量质量。对于低质量场景,可以在最终状态下具有两个MUON或一个电子和一个muon的信号特征获得高显着性。对于仅在CLIC的高能量阶段才能访问的高质量场景,对于Leptonic Signature而言,其意义太低,必须将半左右最终状态用作发现通道。该通道呈现的结果基于使用Delphes软件包对CLIC检测器响应的快速模拟。
The Inert Doublet Model (IDM) is one of the simplest extensions of the Standard Model (SM), providing a dark matter candidate. It is a two Higgs doublet model with a discrete $Z_2$ symmetry, that prevents the scalars of the second doublet (inert scalars) from coupling to the SM fermions and makes the lightest of them stable. We study a large number of IDM scenarios, which are consistent with current constraints on direct detection and relic density of dark matter, as well as with all collider and low-energy limits. We propose a set of benchmark points with different kinematic features, that promise detectable signals at future $e^+e^-$ colliders. Two inert scalar pair-production processes are considered, $e^+e^- \to A~H $ and $e^+e^- \to H^+H^-$, followed by decays of $A$ and $H^\pm$ into final states which always include the lightest and stable neutral scalar dark matter candidate $H$. Significance of the expected observations is studied for different benchmark models and different running scenarios, for centre-of-mass energies from 250 GeV up to 3 TeV. For low mass scenarios, high significance can be obtained for the signal signatures with two muons or an electron and a muon in the final state. For high mass scenarios, which are only accessible at high energy stages of CLIC, the significance is too low for the leptonic signature and the semi-leptonic final state has to be used as the discovery channel. Results presented for this channel are based on the fast simulation of the CLIC detector response with the DELPHES package.