论文标题

物联网设备使用深度学习

IoT Device Identification Using Deep Learning

论文作者

Kotak, Jaidip, Elovici, Yuval

论文摘要

由于设备的安全性较小,因此在组织中,物联网设备在组织中的使用日益增加了攻击媒介的数量。广泛采用的带来了您自己的设备(BYOD)策略,该策略使员工能够将任何物联网设备带入工作场所并将其附加到组织的网络上,这也会增加攻击的风险。为了解决这一威胁,组织经常实施安全政策,在这种策略中,只有允许白色列表的物联网设备的连接。为了监视遵守此类政策并保护其网络,组织必须能够识别连接到其网络的物联网设备,更具体地说,以确定不在白名单上的连接的IoT设备(未知设备)。在这项研究中,我们对网络流量进行了深入的学习,以自动识别连接到网络的物联网设备。与以前的工作相反,我们的方法不需要在网络流量上应用复杂的功能工程,因为我们使用从IoT设备网络流量有效载荷构建的小图像表示IoT设备的通信行为。在我们的实验中,我们在公开可用的数据集上培训了一个多类分类器,成功地识别了10种不同的物联网设备以及智能手机和计算机的流量,精度超过99%。我们还训练了多类分类器,以检测连接到网络的未经授权的物联网设备,达到了超过99%的总平均检测准确性。

The growing use of IoT devices in organizations has increased the number of attack vectors available to attackers due to the less secure nature of the devices. The widely adopted bring your own device (BYOD) policy which allows an employee to bring any IoT device into the workplace and attach it to an organization's network also increases the risk of attacks. In order to address this threat, organizations often implement security policies in which only the connection of white-listed IoT devices is permitted. To monitor adherence to such policies and protect their networks, organizations must be able to identify the IoT devices connected to their networks and, more specifically, to identify connected IoT devices that are not on the white-list (unknown devices). In this study, we applied deep learning on network traffic to automatically identify IoT devices connected to the network. In contrast to previous work, our approach does not require that complex feature engineering be applied on the network traffic, since we represent the communication behavior of IoT devices using small images built from the IoT devices network traffic payloads. In our experiments, we trained a multiclass classifier on a publicly available dataset, successfully identifying 10 different IoT devices and the traffic of smartphones and computers, with over 99% accuracy. We also trained multiclass classifiers to detect unauthorized IoT devices connected to the network, achieving over 99% overall average detection accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源