论文标题

球体的傅立叶插值

Fourier interpolation from spheres

论文作者

Stoller, Martin

论文摘要

在每个尺寸$ d \ geq 2 $中,我们给出一个明确的公式,该公式仅在$ \ mathbb {r}^d $上表达任何schwartz函数的值,仅在其限制方面以及其傅立叶变换的限制,以及所有以原点为中心的球的限制,它们的radius是integer的正方形根。因此,我们将radchenko和Viazovska的插值定理推广到更高的维度。我们开发了一种通用工具,用于在较高维度中转化径向函数的傅立叶唯一性和插值结果,以在固定维度中的非radial功能的相应结果。在更大或等于5的维度中,我们使用与经典庞康科(Poincare)系列密切相关的构造解决了径向问题。在其余的小维度中,我们将该技术与radchenko-viazovska公式的直接概括结合到了较高的径向函数,我们从Bondarenko,Radchenko和Seip的一般结果中推断出这种技术。

In every dimension $d \geq 2$, we give an explicit formula that expresses the values of any Schwartz function on $\mathbb{R}^d$ only in terms of its restrictions, and the restrictions of its Fourier transform, to all origin-centered spheres whose radius is the square root of an integer. We thus generalize an interpolation theorem by Radchenko and Viazovska to higher dimensions. We develop a general tool to translate Fourier uniqueness- and interpolation results for radial functions in higher dimensions, to corresponding results for non-radial functions in a fixed dimension. In dimensions greater or equal to 5, we solve the radial problem using a construction closely related to classical Poincare series. In the remaining small dimensions, we combine this technique with a direct generalization of the Radchenko--Viazovska formula to higher-dimensional radial functions, which we deduce from general results by Bondarenko, Radchenko and Seip.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源