论文标题
神经病:神经网络的灵敏度分析
NeuralSens: Sensitivity Analysis of Neural Networks
论文作者
论文摘要
神经网络是用于数据密集型分析的重要工具,通常应用于模拟因变量和自变量之间的非线性关系。但是,神经网络通常被视为“黑匣子”,可提供有关如何使用输入变量来预测拟合模型中响应的最小信息。本文介绍了\ pkg {neuralsens}软件包,可用于使用部分衍生物方法对神经网络进行灵敏度分析。软件包中的功能可用于获得相对于输入变量的输出的灵敏度,根据灵敏度测量值评估变量的重要性,并表征输入和输出变量之间的关系。为\ proglang {r}中常见神经网络套件的对象提供了计算灵敏度的方法,包括\ pkg {neuralnet},\ pkg {nnet},\ pkg {rsnns},\ pkg {rsnns},\ pkg { \ pkg {caret}。本文概述了从神经网络模型获取信息的技术,关于如何计算出输出的部分衍生物的理论基础,相对于多层感知器模型的输入的输入,包装结构和功能的描述,以及与其他salromang函数相比,对包装结构和函数的描述,以及应用的示例,以比较pkg {neuralsens}的函数。
Neural networks are important tools for data-intensive analysis and are commonly applied to model non-linear relationships between dependent and independent variables. However, neural networks are usually seen as "black boxes" that offer minimal information about how the input variables are used to predict the response in a fitted model. This article describes the \pkg{NeuralSens} package that can be used to perform sensitivity analysis of neural networks using the partial derivatives method. Functions in the package can be used to obtain the sensitivities of the output with respect to the input variables, evaluate variable importance based on sensitivity measures and characterize relationships between input and output variables. Methods to calculate sensitivities are provided for objects from common neural network packages in \proglang{R}, including \pkg{neuralnet}, \pkg{nnet}, \pkg{RSNNS}, \pkg{h2o}, \pkg{neural}, \pkg{forecast} and \pkg{caret}. The article presents an overview of the techniques for obtaining information from neural network models, a theoretical foundation of how are calculated the partial derivatives of the output with respect to the inputs of a multi-layer perceptron model, a description of the package structure and functions, and applied examples to compare \pkg{NeuralSens} functions with analogous functions from other available \proglang{R} packages.