论文标题
随机加权覆盖系统的热力学形式主义
Thermodynamic Formalism for Random Weighted Covering Systems
论文作者
论文摘要
我们为随机覆盖条件的时间间隔的分支分支,分段 - 超声酮映射生成的随机动力学系统开发了淬灭的热力学形式主义。鉴于随机收缩的潜在$φ$(从利弗拉尼 - 苏索 - 瓦尔蒂(Liverani-Saussol-Vaienti)意义上),我们证明存在一个独特的随机保形度量$ν_φ$和独特的随机平衡状态$μ_φ$。此外,我们证明了相关的传输操作员共同体和相关性的指数衰减的准混合度。我们的随机驾驶是由概率空间$(ω,\ Mathscr {f},m)$上可逆的,千古的,具有措施的转换$σ$生成的;对于每个$ω\inΩ$,我们将分段 - 超声酮,滤光图$t_Ω:i \与i $相关联。我们考虑一般电势$φ_Ω:i \ to \ to \ mathbb r \ cup \ { - \ infty \} $,使权重函数$g_Ω= e^{φ_Ω} $是有界变化的。我们提供了我们一般理论的几个例子。特别是,我们的结果适用于线性和非线性系统,包括随机$β$转换,随机翻译的随机$β$转换,随机的高斯 - 瑞尼映射,随机非均匀扩展的地图,例如间歇地图和图形,如合同分支,以及大量随机的Lasota lasota Yorke Yorke Yorke Map。
We develop a quenched thermodynamic formalism for random dynamical systems generated by countably branched, piecewise-monotone mappings of the interval that satisfy a random covering condition. Given a random contracting potential $φ$ (in the sense of Liverani-Saussol-Vaienti), we prove there exists a unique random conformal measure $ν_φ$ and unique random equilibrium state $μ_φ$. Further, we prove quasi-compactness of the associated transfer operator cocycle and exponential decay of correlations for $μ_φ$. Our random driving is generated by an invertible, ergodic, measure-preserving transformation $σ$ on a probability space $(Ω,\mathscr{F},m)$; for each $ω\inΩ$ we associate a piecewise-monotone, surjective map $T_ω:I\to I$. We consider general potentials $φ_ω:I\to\mathbb R\cup\{-\infty\}$ such that the weight function $g_ω=e^{φ_ω}$ is of bounded variation. We provide several examples of our general theory. In particular, our results apply to linear and non-linear systems including random $β$-transformations, randomly translated random $β$-transformations, random Gauss-Renyi maps, random non-uniformly expanding maps such as intermittent maps and maps with contracting branches, and a large class of random Lasota-Yorke maps.