论文标题

通过自适应实例归一化,将学习从合成转移到现实噪声降级

Transfer Learning from Synthetic to Real-Noise Denoising with Adaptive Instance Normalization

论文作者

Kim, Yoonsik, Soh, Jae Woong, Park, Gu Yong, Cho, Nam Ik

论文摘要

现实情况下诺言是一项具有挑战性的任务,因为现实噪声的统计数据不遵循正态分布,并且在空间和时间上也在变化。为了应付各种复杂的现实噪声,我们提出了一个良好的denoising架构和转移学习计划。具体来说,我们采用自适应实例归一化来构建Denoiser,该实例可以使功能映射正规化并防止网络过度拟合训练集。我们还引入了一种转移学习方案,该方案将知识从合成噪声数据传输到现实的噪声DeOiser。从拟议的转移学习中,合成的噪声DENOISER可以从各种合成噪声数据中学习一般特征,而现实的Noise DeNoiser可以从真实数据中学习真实的特征。从实验中,我们发现所提出的剥离方法具有良好的概括能力,因此我们经过合成的网络训练的网络在发表论文的方法中可以实现Darmstadt噪声数据集(DND)的最佳性能。我们还可以看到,提出的转移学习方案通过学习少数标记的数据来鲁棒性地用于实实图像。

Real-noise denoising is a challenging task because the statistics of real-noise do not follow the normal distribution, and they are also spatially and temporally changing. In order to cope with various and complex real-noise, we propose a well-generalized denoising architecture and a transfer learning scheme. Specifically, we adopt an adaptive instance normalization to build a denoiser, which can regularize the feature map and prevent the network from overfitting to the training set. We also introduce a transfer learning scheme that transfers knowledge learned from synthetic-noise data to the real-noise denoiser. From the proposed transfer learning, the synthetic-noise denoiser can learn general features from various synthetic-noise data, and the real-noise denoiser can learn the real-noise characteristics from real data. From the experiments, we find that the proposed denoising method has great generalization ability, such that our network trained with synthetic-noise achieves the best performance for Darmstadt Noise Dataset (DND) among the methods from published papers. We can also see that the proposed transfer learning scheme robustly works for real-noise images through the learning with a very small number of labeled data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源