论文标题

交叉产品Leavitt路径代数

Crossed product Leavitt path algebras

论文作者

Hazrat, Roozbeh, Vas, Lia

论文摘要

如果$ e $是指向的图形,而$ k $是一个字段,那么$ e $ $ e $ o $ k $的leavitt路径$ e $ of $ k $上的$ \ mathbb z。我们说明了这一主要结果,以便还以$ L_K(E)$的代数属性来表征$ l_k(e)$的grothendieck $ \ mathbb z $ -group的预购组属性。如果$ e $有限的顶点有限,那么我们表征$ l_k(e)$在$ k_0^γ(l_k(e))的属性方面得到强烈评分。$我们的证明也提供了替代已知的等价证明$ l_k(e)$的替代证明,并且只有在$ e $ n nif的情况下,如果$ e $ nime $ n. $ l_k(e)$在且仅当$ l_k(e)$是交叉产品时,对单位进行了强烈分级和分级。 在显示主要结果的过程中,我们获得了组$γ$的条件和$γ$的分区环$ k $等效符,并要求$γ$ raded的矩阵环$ r $ yo $ k $超过$ k $的要求很强,跨产品,一个交叉产品,一个倾斜的组环或组环。我们还根据组$γ$在Grothendieck $γ$ -group $ k_0^γ(R)的作用方面表征了这些属性。

If $E$ is a directed graph and $K$ is a field, the Leavitt path algebra $L_K(E)$ of $E$ over $K$ is naturally graded by the group of integers $\mathbb Z.$ We formulate properties of the graph $E$ which are equivalent with $L_K(E)$ being a crossed product, a skew group ring, or a group ring with respect to this natural grading. We state this main result so that the algebra properties of $L_K(E)$ are also characterized in terms of the pre-ordered group properties of the Grothendieck $\mathbb Z$-group of $L_K(E)$. If $E$ has finitely many vertices, we characterize when $L_K(E)$ is strongly graded in terms of the properties of $K_0^Γ(L_K(E)).$ Our proof also provides an alternative to the known proof of the equivalence $L_K(E)$ is strongly graded if and only if $E$ has no sinks for a finite graph $E.$ We also show that, if unital, the algebra $L_K(E)$ is strongly graded and graded unit-regular if and only if $L_K(E)$ is a crossed product. In the process of showing the main result, we obtain conditions on a group $Γ$ and a $Γ$-graded division ring $K$ equivalent with the requirements that a $Γ$-graded matrix ring $R$ over $K$ is strongly graded, a crossed product, a skew group ring, or a group ring. We characterize these properties also in terms of the action of the group $Γ$ on the Grothendieck $Γ$-group $K_0^Γ(R).$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源